Answer:
v = 7.67 m/s
Explanation:
Given data:
horizontal distance 11.98 m
Acceleration due to gravity 9.8 m/s^2
Assuming initial velocity is zero
we know that

solving for t
we have

substituing all value for time t

t = 1.56 s
we know that speed is given as


v = 7.67 m/s
The number of kilowatts used by an individual to operate his appliances is determined as 12.1 kWh.
<h3>
Average daily power consumption</h3>
The average daily power consumption is the amount of electric energy consumed by an individual on a daily rate.
The average daily power consumption of individuals in USA is 12,100 W-hr.
<h3>Converting watts to kilowatts</h3>
E = 12,100 Whr/1000
E = 12.1 kWh
Thus, the number of kilowatts used by an individual to operate his appliances is determined as 12.1 kWh.
Learn more about power here: brainly.com/question/13881533
#SPJ1
We will apply the concepts related to Newton's second law. At the same time we will convert everything to the system of international units.

The values of the velocities are,


We know that the acceleration is equivalent to the change of the speed in a certain time therefore



Now applying the Newton's second law we have,



Therefore the approximate magnitude is 8516.36N
Answer:
beam of light converges to a point A. A lens is placed in the path of the convergent beam 12 cm from P.
To find the point at which the beam converge if the lens is (a) a convex lens of focal length 20 cm, (b) a concave lens of focal length 16 cm
Solution:
As per the given criteria,
the the object is virtual and the image is real (as the lens is placed in the path of the convergent beam)
(a) lens is a convex lens with
focal length, f=20cm
object distance, u=12cm
applying the lens formula, we get
f
1
=
v
1
−
u
1
⟹
v
1
=
f
1
+
u
1
⟹
v
1
=
20
1
+
12
1
⟹
v
1
=
60
3+5
⟹v=7.5cm
Hence the image formed is real, at 7.5cm from the lens on its right side.
(b) lens is a concave lens with
focal length, f=−16cm
object distance, 12cm
applying the lens formula, we get
f
1
=
v
1
−
u
1
⟹
v
1
=
f
1
+
u
1
⟹
v
1
=
−16
1
+
12
1
⟹
v
1
=
48
−3+4
⟹v=48m
Hence the image formed is real, at 48 cm from the lens on the right side.
The distance vs time graph of a faster moving object would have a greater slope than that of a slower moving one. The object would move a greater distance per unit time