Answer: 0.635 M
Explanation:
Molarity : It is defined as the number of moles of solute present per liter of the solution.
Formula used :

where,
n= Moles=
= volume of solution = 150 ml


as 1 mole of
gives 3 moles of
ions
Thus molarity of
= 
Molarity of
= 0.635 M
Combined gas law is
PV/T = K (constant)
P = Pressure
V = Volume
T = Temperature in Kelvin
For two situations, the combined gas law can be applied as,
P₁V₁ / T₁ = P₂V₂ / T₂
P₁ = 3.00 atm P₂ = standard pressure = 1 atm
V₁ = 720.0 mL T₂ = standard temperature = 273 K
T₁ = (273 + 20) K = 293 K
By substituting,
3.00 atm x 720.0 mL / 293 K = 1 atm x V₂ / 273 K
V₂ = 2012.6 mL
hence the volume of gas at stp is 2012.6 mL
Answer:
Kc = 3.90
Explanation:
CO reacts with
to form
and
. balanced reaction is:

No. of moles of CO = 0.800 mol
No. of moles of
= 2.40 mol
Volume = 8.00 L
Concentration = 
Concentration of CO = 
Concentration of
= 

Initial 0.100 0.300 0 0
equi. 0.100 -x 0.300 - 3x x x
It is given that,
at equilibrium
= 0.309/8.00 = 0.0386 M
So, at equilibrium CO = 0.100 - 0.0386 = 0.0614 M
At equilibrium
= 0.300 - 0.0386 × 3 = 0.184 M
At equilibrium
= 0.0386 M
![Kc=\frac{[H_2O][CH_4]}{[CO][H_2]^3}](https://tex.z-dn.net/?f=Kc%3D%5Cfrac%7B%5BH_2O%5D%5BCH_4%5D%7D%7B%5BCO%5D%5BH_2%5D%5E3%7D)

wave length is what he decreased
Answer :
(a) The rate of
formed is, 0.066 M/s
(b) The rate of
formed is, 0.033 M/s
Explanation : Given,
= 0.066 M/s
The balanced chemical reaction is,

The rate of disappearance of
= ![-\frac{1}{2}\frac{d[NO]}{dt}](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B2%7D%5Cfrac%7Bd%5BNO%5D%7D%7Bdt%7D)
The rate of disappearance of
= ![-\frac{d[O_2]}{dt}](https://tex.z-dn.net/?f=-%5Cfrac%7Bd%5BO_2%5D%7D%7Bdt%7D)
The rate of formation of
= ![\frac{1}{2}\frac{d[NO_2]}{dt}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%5Cfrac%7Bd%5BNO_2%5D%7D%7Bdt%7D)
As we know that,
= 0.066 M/s
(a) Now we have to determine the rate of
formed.
![\frac{1}{2}\frac{d[NO_2]}{dt}=\frac{1}{2}\frac{d[NO]}{dt}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%5Cfrac%7Bd%5BNO_2%5D%7D%7Bdt%7D%3D%5Cfrac%7B1%7D%7B2%7D%5Cfrac%7Bd%5BNO%5D%7D%7Bdt%7D)
![\frac{d[NO_2]}{dt}=\frac{d[NO]}{dt}=0.066M/s](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5BNO_2%5D%7D%7Bdt%7D%3D%5Cfrac%7Bd%5BNO%5D%7D%7Bdt%7D%3D0.066M%2Fs)
The rate of
formed is, 0.066 M/s
(b) Now we have to determine the rate of molecular oxygen reacting.
![-\frac{d[O_2]}{dt}=-\frac{1}{2}\frac{d[NO]}{dt}](https://tex.z-dn.net/?f=-%5Cfrac%7Bd%5BO_2%5D%7D%7Bdt%7D%3D-%5Cfrac%7B1%7D%7B2%7D%5Cfrac%7Bd%5BNO%5D%7D%7Bdt%7D)
![\frac{d[O_2]}{dt}=\frac{1}{2}\times 0.066M/s=0.033M/s](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5BO_2%5D%7D%7Bdt%7D%3D%5Cfrac%7B1%7D%7B2%7D%5Ctimes%200.066M%2Fs%3D0.033M%2Fs)
The rate of
formed is, 0.033 M/s