Options found from another source are:
a. oxygen. b. glucose. c. energy stored as ATP. d. carbon dioxide and water
Answer:
c energy stored as ATP
Explanation:
Cellular respiration converts glucose into energy in the form of ATP (c). The answer cannot be oxygen (a), because this is required for this process as a final electron acceptor. In terms of photosynthesis, oxygen is released as a by-product. The answer cannot be glucose (b) because that is our starting point for respiration, and what is synthesised during photosynthesis. The answer cannot be (d) as carbon dioxide and water are released by cellular respiration, and required by photosynthesis
Tt is the genotype that will appear in boxes two and three.
If you look at the column and row that intersect to form boxes two and three, you will see that they are T and t. That is the best way I can describe it, sorry if it’s confusing.
Answer:
The correct option is;
It contains 6.02 × 10²³ particles of a given substance
Explanation:
A mole of substance is the standard scientific unit of measurement for the quantity of the substance which is made up of a large number of small particles such as molecules, ions, atoms, electrons or other entities.
The General Conference on Weights and Measures defines the mole as the amount of a substance that contains 6.02214076 × 10²³ units of entities
The number 6.02214076 × 10²³, is also known as Avogadro's number.
Answer:
When ΔS > ΔH/ T, then the reaction will proceed forward
Explanation:
- The entity that determines the whether a reaction will occur on its own in the forward direction (Spontaneity or Feasibility) is Gibb's free energy.
- Gibb's free energy is the energy available to do work. It is denoted as 'G'. It cannot be easily measured. The change (ΔG) can only be measured. ΔG = ΔH - TΔS
when ΔG is positive, The reaction is not spontaneous (reaction will not occur on its own)
When ΔG is negative, The reaction is spontaneous (reaction will occur on its own)
When ΔG is zero, the reaction is in equilibrium
Option A and E are not correct. ΔH (Enthalpy) cannot determine spontaneity
Option C and D cannot alone determine spontaneity of reaction
For reaction to be spontaneous, TΔS > ΔH
Therefore, ΔS > ΔH/T
I would say B but I am not sure so sorry if it is wrong!!