Answer:
location of battery in this diagram is at A and location of switch is at B.
I'm not from that school but I can help you.
Answer:
angular range is ( 0.681 rad , 0.35 rad )
Explanation:
given data
wavelength λ = 380 nm = 380 ×
m
wavelength λ = 700 nm = 700 ×
m
to find out
angular range of the first-order
solution
we will apply here slit experiment equation that is
d sinθ = m λ ...........1
here m is 1 for single slit and d is = 
so put here value in equation 1 for 380 nm
we get
d sinθ = m λ
sinθ = 1 × 380 × 
θ = 0.35 rad
and for 700 nm
we get
d sinθ = m λ
sinθ = 1 × 700 × 
θ = 0.681 rad
so angular range is ( 0.681 rad , 0.35 rad )
Answer:
The ball will have a kinetic energy of 0.615 Joules.
Explanation:
Use the kinetic energy formula

The kinetic energy at the moment of leaving the hand will be 0.615 Joules. (From there on, as it ball is traveling upwards, this energy will be gradually traded off with potential energy until the ball's velocity becomes zero at the apex of the flight)
Answer:
1340.2MW
Explanation:
Hi!
To solve this problem follow the steps below!
1 finds the maximum maximum power, using the hydraulic power equation which is the product of the flow rate by height by the specific weight of fluid
W=αhQ
α=specific weight for water =9.81KN/m^3
h=height=220m
Q=flow=690m^3/s
W=(690)(220)(9.81)=1489158Kw=1489.16MW
2. Taking into account that the generator has a 90% efficiency, Find the real power by multiplying the ideal power by the efficiency of the electric generator
Wr=(0.9)(1489.16MW)=1340.2MW
the maximum possible electric power output is 1340.2MW