Answer:
a = 1.709g
Explanation:
Given the absence of external forces being applied in the space station, it is possibly to use the Principle of Angular Momentum Conservation, which states that:

The required initial angular speed is obtained herein:




The initial moment of inertia is:



The final moment of inertia is:



Now, the final angular speed is obtained:



The apparent acceleration is:



This is approximately 1.709g.
Acid chemicals because acid chemicals break down limestone statues
Answer:
Explanation:
net force on the skier = mg sin 39 - μ mg cos39
mg ( sin39 - μ cos39 )
= 73 x 9.8 ( .629 - .116)
= 367 N
impulse = net force x time = change in momentum .
= 367 x 5 = 1835 kg m /s
velocity of the skier after 5 s = 1835 / 73
= 25.13 m /s
b )
net force becomes zero
mg ( sin39 - μ cos39 ) = 0
μ = tan39
= .81
c )
net force becomes zero , so he will continue to go ahead with constant speed of 25.13 m /s
so he will have speed of 25.13 m /s after 5 s .
<span>Vibration is the Answer</span>
Answer:
B = 0.135T
Explanation:
To find the magnitude of the magnetic field you use the following formula, for the torque produced by a magnetic field B in a loop:
(1)
τ: torque = 1.51*10^-5 Nm
I: current = 2.47mA = 2.47*10^-3 A
B: magnitude of the magnetic field
A: area of the loop = 4.97cm^2 = 4.97(10^-2m)^2=4.97*10^-4m^2
N: turns = 181
θ: angle between B and the magnetic dipole (same as the direction of the normal to the plane)
You replace the values of the parameters in (1). Furthermore you do B the subject of the formula:
