<span>Charging by friction occurs, Electrons are transferred when one object rubs against another.
Another example of this would be socks on carpet.
Hope this helps!</span>
Answer:
42KVA
Explanation:
Given data
High Voltage (HV)= 480V
Low Voltage (LV)= 277V
Fo find
Size of transformer=?
Solution
To find the size of transformer here we use the co-ratio.The Co-ratio is given as:
Co-Ratio= (HV - LV)/HV
where
HV is High Voltage
LV is Low Voltage
Now put the values we get
Co- Ratio=(480-277)/480=.42
So the size of transformer is 42KVA
Answer:
The magnitude of the magnetic force acting on the wire is zero, because the magnetic field is parallel to the wire.
In fact, the magnetic force exerted by the magnetic field on the wire is
where I is the current in the wire, L the length of the wire, B the magnetic field intensity and the angle between the direction of B and the wire. In our problem, B and the wire are parallel, so the angle is and so , therefore the magnetic force is zero: F=0.
Answer:
35.6 N
Explanation:
We can consider only the forces acting along the horizontal direction to solve the problem.
There are two forces acting along the horizontal direction:
- The horizontal component of the pushing force, which is given by

with 
- The frictional force, whose magnitude is

where
, m=8.2 kg and g=9.8 m/s^2.
The two forces have opposite directions (because the frictional force is always opposite to the motion), and their resultant must be zero, because the suitcase is moving with constant velocity (which means acceleration equals zero, so according to Newton's second law: F=ma, the net force is zero). So we can write:
