Answer:
they would react to make aluminum oxide and nitrogen
Explanation:
hope this helps plz mark as brainliest
<span>he introduced his law of triads. each triad was a group of three elements</span>
Answer:
118.22 atm
Explanation:
2SO₂(g) + O₂(g) ⇌ 2SO₃(g)
KP = 0.13 = 
Where p(SO₃) is the partial pressure of SO₃, p(SO₂) is the partial pressure of SO₂ and p(O₂) is the partial pressure of O₂.
- With 2.00 mol SO₂ and 2.00 mol O₂ if there was a 100% yield of SO₃, then 2 moles of SO₃ would be produced and 1.00 mol of O₂ would remain.
- With a 71.0% yield, there are only 2*0.71 = 1.42 mol SO₃, the moles of SO₂ that didn't react would be 2 - 1.42 = 0.58; and the moles of O₂ that didn't react would be 2 - 1.42/2 = 1.29.
The total number of moles is 1.42 + 0.58 + 1.29 = 3.29. With that value we can calculate the molar fraction (X) of each component:
The partial pressure of each gas is equal to the total pressure (PT) multiplied by the molar fraction of each component.
Rewriting KP and solving for PT:

Answer:
V= 0.031L
Explanation:
P= 0.97atm, V= ?, n= 0.12/98 =0.00122mol, R= 0.082, T= 22.4+273= 295.4
Applying
PV=nRT
0.970×V = 0.00122×0.082×295.4
Simplify the above equation
V= 0.031L