Heat required to raise the temperature = 159.505 J
<h3>Further explanation</h3>
Given
c = specific heat of Beryllium = 1.825 J/g C
m = mass = 2.3 g
Δt = Temperature difference : 60 - 22 = 38 °C
Required
Heat required
Solution
Heat can be formulated
Q = m.c.Δt
Input the value :
Q = 2.3 x 1.825 x 38
Q = 159.505 J
Answer:
The object has to move a distance when a force is applied to it
Explanation:
For work to be done on a body the force applied must move the body through a particular distance.
Work done = Force x distance
If no distance is moved by the force, no work is done.
Also, the angle between the force and the distance must be 0 to do the maximum work on the body.
It releases energy (what I am saying in other words that "D. Releases" would be your answer)
The answer is 34.1 mL.
Solution:
Assuming ideal behavior of gases, we can use the universal gas law equation
P1V1/T1 = P2V2/T2
The terms with subscripts of one represent the given initial values while for terms with subscripts of two represent the standard states which is the final condition.
At STP, P2 is 760.0torr and T2 is 0°C or 273.15K. Substituting the values to the ideal gas expression, we can now calculate for the volume V2 of the gas at STP:
(800.0torr * 34.2mL) / 288.15K = (760.0torr * V2) / 273.15K
V2 = (800.0torr * 34.2mL * 273.15K) / (288.15K * 760.0torr)
V2 = 34.1 mL
Explanation:
What's Dis Suppose To Mean ?