Answer:
%Reduction in area = 73.41%
%Reduction in elongation = 42.20%
Explanation:
Given
Original diameter = 12.8 mm
Gauge length = 50.80mm
Diameter at the point of fracture = 6.60 mm (0.260 in.)
Fractured gauge length = 72.14 mm.
%Reduction in Area is given as:
((do/2)² - (d1/2)²)/(do/2)²
Calculating percent reduction in area
do = 12.8mm, d1 = 6.6mm
So,
%RA = ((12.8/2)² - 6.6/2)²)/(12.8/2)²
%RA = 0.734130859375
%RA = 73.41%
Calculating percent reduction in elongation
%Reduction in elongation is given as:
((do) - (d1))/(d1)
do = 72.14mm, d1 = 50.80mm
So,
%RA = ((72.24) - (50.80))/(50.80)
%RA = 0.422047244094488
%RA = 42.20%
If your accelerator gets stuck down, do the following: Shift to neutral. Apply the brakes. Keep your eyes on the road and look for a way out.If your accelerator gets stuck down, do the following:
Shift to neutral.
Apply the brakes.
Keep your eyes on the road and look for a way out.
Warn other drivers by blinking and flashing your hazard lights.
Try to drive the car safely off the road.
Turn off the ignition when you no longer need to change direction.
Answer:
a. Rotational speed of the drill = 375.96 rev/min
b. Feed rate = 75 mm/min
c. Approach allowance = 3.815 mm
d. Cutting time = 0.67 minutes
e. Metal removal rate after the drill bit reaches full diameter. = 9525 mm³/min
Explanation:
Here we have
a. N = v/(πD) = 15/(0.0127·π) = 375.96 rev/min
b. Feed rate = fr = Nf = 375.96 × 0.2 = 75 mm/min
c. Approach allowance = tan 118/2 = (12.7/2)/tan 118/2 = 3.815 mm
d. Approach allowance T∞ =L/fr = 50/75 = 0.67 minutes
e. R = 0.25πD²fr = 9525 mm³/min.