Explanation:
It s given that,
Mass of a planet, 
Radius of a planet, 
(1) We need to find the acceleration due to gravity for a person on the surface of the planet. Its formula is given by :



(2) The escape velocity is given by :


v = 7324.61 m/s
Hence, this is the required solution.
Answer:
the branch of science concerned with the nature and properties of matter and energy. The subject matter of physics, distinguished from that of chemistry and biology, includes mechanics, heat, light and other radiation, sound, electricity, magnetism, and the structure of atoms.
Answer:
The circular solar orbital speed at 4.0AU is 1/4( one fourth) that at 1.0AU
Explanation:
am = mvr= angular momentum
am4= 4mvt
am1= mvp1
Vt=1/4vp
Vp=4vt
am1= 4mvt
am1=am4
The circular solar orbital speed at 4.0AU is 1/4 (one fourth) that at 1.0AU
(a) This is a freefall problem in disguise - when the ball returns to its original position, it will be going at the same speed but in the opposite direction. So the ball's final velocity is the negative of its initial velocity.
Recall that

We have
, so that

(b) The speed of the ball at the start and at the end of the roll are the same 8 m/s, so the average speed is also 8 m/s.
(c) The ball's average velocity is 0. Average velocity is given by
, and we know that
.
(d) The position of the ball
at time
is given by

Take the starting position to be the origin,
. Then after 6 seconds,

so the ball is 42 m away from where it started.
We're not asked to say in which direction it's moving at this point, but just out of curiosity we can determine that too:

Since the velocity is positive, the ball is still moving up the incline.
Yes echolocation is based on the use of sound and knowing where the sound comes from without having to look for it a lot of soldiers on the battle field need to know how to use echolocation so they can basically not die