True, the measurement shown is a derived unit.
Answer:
a. 572Btu/s
b.0.1483Btu/s.R
Explanation:
a.Assume a steady state operation, KE and PE are both neglected and fluids properties are constant.
From table A-3E, the specific heat of water is
, and the steam properties as, A-4E:

Using the energy balance for the system:

Hence, the rate of heat transfer in the heat exchanger is 572Btu/s
b. Heat gained by the water is equal to the heat lost by the condensing steam.
-The rate of steam condensation is expressed as:

Entropy generation in the heat exchanger could be defined using the entropy balance on the system:

Hence,the rate of entropy generation in the heat exchanger. is 0.1483Btu/s.R
Power is defined as the rate at which the body is doing work:

Work is defined as displacement done by the force times that displacement:

We know that we need 62N to move the box, so when we apply this force along the path of 10m we have done:

of work.
Now we just divide that by 5s to get how much power is required:
Answer:
One would need to know how far apart the towns are:
T = SA / 40 time it takes for first cyclist to travel S1
T = SB / 60 time it takes for cyclist B to travel distance S2
SA + SB = S the distance between the towns
SB = 60 / 40 SA = 1.5 SA
SA + 1.5 SA = S
S = 2.5 SA where cyclist travels distance SA
The time will depend on the separation of the towns.