Answer:
The final position made with the vertical is 2.77 m.
Explanation:
Given;
initial velocity of the ball, V = 17 m/s
angle of projection, θ = 30⁰
time of motion, t = 1.3 s
The vertical component of the velocity is calculated as;

The final position made with the vertical (Yf) after 1.3 seconds is calculated as;

Therefore, the final position made with the vertical is 2.77 m.
Answer:
± (.021 ) ohm
Explanation:
In the addition of two physical quantities , the uncertainties are simply added .
So , net uncertainty in the value of R will be
± (.007 +.014)
=± (.021 ) ohm
Miniature circuit breakers is called the developed form of fuse because MCBs are more sensitive to current than fuses. They immediately detect any abnormality and switch off the electrical circuit automatically. This prevents any permanent damage to electrical appliances and human beings
You do this one just like the other one that I just solved for you.
For this one ...
The density of the object is 2.5 gm/cm³.
We know that every cm³ of it we have contains 2.5 gm of mass.
We have to find out how many cm³ we have.
The question tells us: We have 2.0 cm³.
Each cm³ of space that the object occupies contains 2.5 gm of mass.
So the 2.0 cm³ that we have contains (2 x 2.5 gm) = 5 gms.
That's the mass of our object.
perimeter of a rectangle = 2(L+B)
90=2(L+B)
90/2=L+B
45=L+B