1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
xenn [34]
3 years ago
6

Calculate the velocity of the objects motion represented in the following graph. Show all your work.

Physics
1 answer:
Leni [432]3 years ago
6 0

as we know that velocity= displacement/change in time

hence velocity here is= 11-3/12-0

=8/12

=2/3

=0.667m/s

hopefully i am right

You might be interested in
The length of a simple pendulum is 0.81 mand the mass of the particle (the "bob") at the end of the cable is0.23 kg. The pendulu
Gemiola [76]

Answer:

\displaystyle w=3.478\ rad/sec

M=0.0182\ J

v=0.398\ m/s

Explanation:

<u>Simple Pendulum</u>

It's a simple device constructed with a mass (bob) tied to the end of an inextensible rope of length L and let swing back and forth at small angles. The movement is referred to as Simple Harmonic Motion (SHM).

(a) The angular frequency of the motion is computed as

\displaystyle w=\sqrt{\frac{g}{L}}

We have the length of the pendulum is L=0.81 meters, then we have

\displaystyle w=\sqrt{\frac{9.8}{0.81}}

\displaystyle w=3.478\ rad/sec

(b) The total mechanical energy is computed as the sum of the kinetic energy K and the potential energy U. At its highest point, the kinetic energy is zero, so the mechanical energy is pure potential energy, which is computed as

U=mgh

where h is measured to the reference level (the lowest point). Please check the figure below, to see the desired height is denoted as Y. We know that

H+Y=L

And

H=L\ cos\alpha

Solving for Y

Y=L(1-cos\alpha )

Since\ \alpha=8.1^o, L=0.81\ m

Y=0.0081\ m

The potential energy is

U=mgh=0.23\ kg(9.8\ m/s^2)(0.0081\ m)

U=0.0182\ J

The mechanical energy is, then

M=K+U=0+U=U

M=0.0182\ J

(c) The maximum speed is achieved when it passes through the lowest point (the reference for h=0), so the mechanical energy becomes all kinetic energy (K). We know

\displaystyle K=\frac{mv^2}{2}

Equating to the mechanical energy of the system (M)

\displaystyle \frac{mv^2}{2}=0.0182

Solving for v

\displaystyle v=\sqrt{\frac{(2)(0.0182)}{0.23}}

v=0.398\ m/s

4 0
3 years ago
Does the ke of a car change more when it accelerates from 11 km/h to 21 km/h or when it accelerates from 21 km/h to 31 km/h?
svp [43]
Titty milk I think because it taste amazing so you can go 21km/h
7 0
3 years ago
A point charge Q is held at a distance r from the center of a dipole that consists of two charges ±q separated by a distance s.
marishachu [46]

Answer:

a) the magnitude of the force is

F= Q(\frac{kqs}{r^3}) and where k = 1/4πε₀

F = Qqs/4πε₀r³

b)  the magnitude of the torque on the dipole

τ = Qqs/4πε₀r²

Explanation:

from coulomb's law

E = \frac{kq}{r^{2} }

where k = 1/4πε₀

the expression of the electric field due to dipole at a distance r is

E(r) = \frac{kp}{r^{3} } , where p = q × s

E(r) = \frac{kqs}{r^{3} } where r>>s

a) find the magnitude of force due to the dipole

F=QE

F= Q(\frac{kqs}{r^3})

where k = 1/4πε₀

F = Qqs/4πε₀r³

b) b) magnitude of the torque(τ) on the dipole is dependent on the perpendicular forces

τ = F sinθ × s

θ = 90°

note: sin90° = 1

τ = F × r

recall  F = Qqs/4πε₀r³

∴ τ = (Qqs/4πε₀r³) × r

τ = Qqs/4πε₀r²

8 0
3 years ago
The pointer of an analog meter is connected to a
dangina [55]
C. coil suspended by bearings. 
<span>but im not 100% sure</span>
8 0
3 years ago
Read 2 more answers
A 5.92 g object moving to the right at 17.1 cm/s makes an elastic head-on collision with an 11.84 g object that is initially at
Lelechka [254]

Answer:

v₁f = -5.7 cm/s

Explanation:

  • Assuming no external forces acting during the collision, total momentum must be conserved, as follows:

        m_{1} * v_{10} = m_{1} *v_{1f} + m_{2} * v_{2f} (1)

  • Rearranging terms, we have:

        m_{1} * (v_{10} - *v_{1f} ) = m_{2} * v_{2f} (2)

  • We also know that the collision is elastic, so total kinetic energy must be conserved , as follows:

        \Delta K = 0 \\ \\ \frac{1}{2} * m_{1} *v_{10} ^{2} = \frac{1}{2}* m_{1}  *v_{1f} ^{2}  + \frac{1}{2}* m_{2}  *v_{2f} ^{2} (3)

  • Rearranging , and simplifying common terms, we have:

        m_{1}* (v_{10} ^{2} -v_{1f} ^{2} ) = m_{2}  *v_{2f} ^{2} (4)

  • Replacing by the givens, doing some algebra and dividing (4) by (2), we find the following relationship:

        v_{10} + v_{1f} = v_{2f}

  • Replacing the expression above in (1), as m₂ = 2*m₁, we can find the value of v₁f, as follows:

       m_{1} * v_{10}  = m_{1} * v_{1f} +2*m_{1} * (v_{10} + v_{1f})\\ \\ -(m_{1} * v_{10}) = 3* m_{1} *v_{1f} \\ \\ v_{1f} = - \frac{v_{10} }{3}  = \frac{-17.1cm/s}{3} = -5.7 cm/s

7 0
3 years ago
Other questions:
  • A submarine is 58.8 m from a whale. The sub sends out a sonar ping to locate the whale. The speed of sound underwater is 1520 m/
    11·1 answer
  • This demonstrates which of the following?
    14·2 answers
  • John's grandfather clock has a pendulum that keeps the seconds. What does this graph say about the observed pattern of motion?
    12·2 answers
  • When an atom is involved in a nuclear reaction:
    5·1 answer
  • a skydiver with a mass of 60 kg jumps out of an airplane at a height of 5 5000m. the acceleration due to gravity is 9.8 m/s2. wh
    14·1 answer
  • the object is in _________ when the vector sum of the force is acting on the object is equal to zero​
    5·1 answer
  • As an airplane takes off, the air flows across the wings of the airplane. Which of the following would be the best description?
    10·1 answer
  • A railroad car of mass 2.50∙10^4 kg is moving at a speed of 4.00 m/s. It collides and couples with three other coupled railroad
    6·1 answer
  • Explain some of the things that you like to do, but could not if you did not have any thumbs.
    6·1 answer
  • If you were standing on the edge of a thunderstorm as it begins to form, would the wind be blowing into the storm or out of it?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!