Answer:
They would equally balance because of the chemicles.
Explanation:
Answer:
Solution:-
The gas is in the standard temperature and pressure condition i.e. at S.T.P
Therefore,
V
i
=22.4dm
3
V
f
=?
As given that the expansion is isothermal and reversible
∴ΔU=0
Now from first law of thermodynamics,
ΔU=q+w
∵ΔU=0
∴q=–w
Given that the heat is absorbed.
∴q=1000cal
⇒w=−q=−1000cal
Now,
Work done in a reversible isothermal expansion is given by-
w=−nRTln(
V
i
V
f
)
Given:-
T=0℃=273K
n=1 mol
∴1000=−nRTln(
V
i
V
f
)
⇒1000=−1×2.303×2×273×log(
22.4
V
f
)
Explanation:
Answer: Chlorophyll is a green photosynthetic pigment found in plants, algae, and cyanobacteria.
Chlorophyll absorbs mostly in the blue and to a lesser extent red portions of the electromagnetic spectrum, hence its intense green color.
Green substance in producers that traps light energy from the sun, which is then used to combine carbon dioxide and water into sugars in the process of photosynthesis Chlorophyll is vital for photosynthesis, which helps plants get energy from light.
Chlorophyll molecules are specifically arranged in and around pigment protein complexes called photosystems, which are embedded in the thylakoid membranes of chloroplasts.
Request: It would really help if you could make me brainliest
Answer:
1569 torr
Explanation:
Assuming ideal behaviour and constant temperature, we can solve this problem by using <em>Boyle's law</em>, which states:
Where in this case:
We <u>input the data given by the problem</u>:
- 202 mL * 505 torr = 65.0 mL * P₂
And <u>solve for P₂</u>:
Answer:
3.38 moles of neon
Explanation:
First you have to multiply the volume (75.8 L) by the density to get the mass. Neon has a density of 0.9002 g/L at STP, we can just assume it's 0.9 g/L.
That leaves the mass at 68.22 g
Then, you divide the mass by the molar mass to get the number of moles. The molar mass of neon is 20.1797 u, we can leave it at 20.18
That leaves you at approximately 3.38 moles of neon