
0.0006 in scientific notation is 6 × 10-4
<h2>Step by step Explanation:</h2>
All numbers in scientific notation or standard form are written in the form
m × 10n, where m is a number between 1 and 10 ( 1 ≤ |m| < 10 ) and the exponent n is a positive or negative integer.
To convert 0.0006 into scientific notation, follow these steps:
Move the decimal 4 times to right in the number so that the resulting number, m = 6, is greater than or equal to 1 but less than 10
Since we moved the decimal to the right the exponent n is negative
n = -4
Write in the scientific notation form m × 10n
= 6 × 10-4
Therefore,
6 × 10-4 is the scientific notation form of 0.0006 number and 6e-4 is the scientific e-notation form for 0.0006
<h2>HOPE IT HELPS ☺️</h2>
Answer:
The law of conservation of energy states that the total energy is constant in any process. Energy may change in form or be transferred from one system to another, but the total remains the same.
Could you please help me with the two most recent questions of mine on my page? I will give u brainliest and 20 points! :))) X
Answer:
A
both forms of energy referred to in the question is light and heat energy
light energy is the visible energy that travels at a known constant speed of 3.0×10^9m/s
while heat energy is the invisible energy that travels in form of radiation at variable speeds
Answer:
48.8%
Explanation:
The reaction has a 1:1 mole ratio so;
Number of moles of benzoic acid reacted = mass/molar mass = 3.8 g/122.12 g/mol = 0.03 moles
So;
0.03 moles of methyl benzoate is formed in the reaction
Mass of methyl benzoate formed = 0.03 moles * 136.15 g/mol = 4.1 g
percent yield = actual yield/theoretical yield * 100/1
percent yield = 2.0 g/4.1 g * 100 = 48.8%
Answer:
Explanation:
From the information given:
Mass of carbon tetrachloride = 5 kg
Pressure = 1 bar
The given density for carbon tetrachloride = 1590 kg/m³
The specific heat of carbon tetrachloride = 0.84 kJ/kg K
From the composition, the initial volume of carbon tetrachloride will be:
= 0.0031 m³
Suppose
is independent of temperature while pressure is constant;
Then:
The change in volume can be expressed as:





However; the workdone = -PdV

W = - 7.6 J
The heat energy Q = Δ h


Q = 84 kJ
The internal energy is calculated by using the 1st law of thermodynamics; which can be expressed as;
ΔU = ΔQ + W
ΔU = 84 kJ + ( -7.6 × 10⁻³ kJ)
ΔU = 83.992 kJ