The answer is 236.5 J/K
According to Δ G formula:
ΔG = ΔH - TΔS
when ΔG is the change in free energy (KJ)
and ΔH is the change in enthalpy (KJ)= ΔHvap * moles
= 71.8 KJ/mol * 1.11 mol
= 79.7 KJ
and T is the absolute temperature (K)= 64 °C + 273°C = 337 K
Δ S is the change in entropy KJ/K
by substitution:
when at equilibrium ΔG = 0
∴ΔS = ΔH / T
=79.7 KJ/ 337 K
= 0.2365 KJ/K
= 236.5 J/K
Matter is a slightly archaic word for something with mass, as in the conservation of matter (which must be paired with the conservation of energy to still hold true. Mass can be converted back and forth between energy, so therefore so can matter. Of course relativistic mass is conserved as it's a function of the energy of an object in that reference frame.
Answer is D breaking apart I to not more than two
Answer:
2. The metal would lose one electrons and the non metal would gain one electrons
Explanation:
An atom of a certain element reacts with the atoms of other elements in order to fullfill its outermost shell (called valence shell).
We notice the following:
- The elements in Group 1 (which are metals) have only 1 electron in their valence shell
- The elements in Group 17 (which are non-metals) have 1 vacancy (lack of electron) in their valence shell
This means that in order for both an atom of group 1 and an atom of group 17 to fullfill the valence shell, they have to:
- The atom in group 1 has to give away its only electron of the valence shell
- The atom in group 17 has to gain one electron in order to fullfill the shell
Therefore, the correct option is
2. The metal would lose one electrons and the non metal would gain one electrons
Answer:
I assume your talking about carbon when you say 12 so it'd be 12 grams if you are
Explanation:
The molar mass of any substance in grams per mole is numerically equal to the mass of that substance expressed in atomic mass units.
Hope this helps you some