D. Gravitational potential
Complete Question
An isolated charged soap bubble of radius R0 = 7.45 cm is at a potential of V0=307.0 volts. V0=307.0 volts. If the bubble shrinks to a radius that is 19.0%19.0% of the initial radius, by how much does its electrostatic potential energy ????U change? Assume that the charge on the bubble is spread evenly over the surface, and that the total charge on the bubble r
Answer:
The difference is 
Explanation:
From the question we are told that
The radius of the soap bubble is 
The potential of the soap bubble is 
The new radius of the soap bubble is 
The initial electric potential is mathematically represented as
The final electric potential is mathematically represented as
The initial potential is mathematically represented as

The final potential is mathematically represented as

Now

substituting values

=> 
So
Therefore
where k is the coulomb's constant with value 
substituting values

The answer is 117.6 J
The potential energy of
the object is actually its stored energy:
<span>E =
m · g · h
E - the potential energy of the object,
m - the mass of the object,
g - acceleration due to gravity,
h - the height of the object.
m = 4 kg
g = 9.8 m/s</span>²
h = 3 m
E = 4 * 9.8 * 3 = 117.6 J
Answer:
20 N exerts no torque about the pivot.
14 N exerts a counterclockwise torque of 14 * .3 = .42 N-m
6 exerts a clockwise torque of 6 * .7 = .42 N-m
The meter stick will not turn because there is no net torque on the meter stick.