If it were possible for an object to fall freely near the surface of the Earth,
-- The direction of its velocity would always be "down"; that is, toward the center of the Earth.
-- The size of its velocity would continually increase, at the rate of 9.8 meters per second for every second it falls.
<span>An example of the deregulation of a government regulated natural monopoly is where the new ;aw allows consumers to be able to choose between the electricity providers which is the first choice because a deregulation of a government regulated natural monopoly is a way of the rules of having to be remove or reduced when tackling or making use of the government regulated natural monopoly.</span>
Corona gas star is literally z thickest layer. hope it helped.
Answer:
d = 19.796m
Explanation:
Since the ball is in the air for 4.02 seconds, the ball should reach the maximum point from the ground in half the total time, therefore, t=2.01s to reach maximum height. At the maximum height, the velocity in the y-direction is 0.
So we know t=2.01, vi=0, g=a=9.8m/s and we are solving for d.
Next, you look for a kinematic equation that has these parameters and the one you should choose is:

Now by substituting values in, we get
d = 19.796m
Classics.
Resistance is equal to relation between voltage and current.

If we express current:

If current is in fact 0 then one of the quantities either voltage or resistance must be equal to zero. Since resistance cannot be equal 0, because that would violate mathematical law that states that division by zero is undefined the only logical conclusion is voltage.
So the answer should be C voltage and B zero.
Hope this helps!