Answer:
the value of H° is below -6535 kj. +6H2O
Explanation:
6H2O answer solved
D! It’s a pure substance and a compound
Nume smechere )(∂ⓓᗴηⓛ⫸⫷nume smechere )(∂ⓓᗴηⓛ⫸⫷nume smechere )(∂ⓓᗴηⓛ⫸⫷nume smechere )(∂ⓓᗴηⓛ⫸⫷nume smechere )(∂ⓓᗴηⓛ⫸⫷nume smechere )(∂ⓓᗴηⓛ⫸⫷nume smechere )(∂ⓓᗴηⓛ⫸⫷nume smechere )(∂ⓓᗴηⓛ⫸⫷nume smechere )(∂ⓓᗴηⓛ⫸⫷
Answer:
V2= 1.03L
Explanation:
Start off with what you are given.
V^1: 1.00L
T^1: 23°C
V^2?
T^2: 33°C
If you know your gas laws, you have to utilise a certain gas law called Charles' Law:
V^1/T^1 = V^2/T^2
Remember to convert Celsius values to Kelvin whenever you are dealing with gas problems. This can be done by adding 273 to whatever value in Celsius you have.
(23+273 = 296) (33+273 = 306)
Multiply crisscross
1.00/296= V^2/306
296V^2 = 306
Dividing both sides by 296 to isolate V2, we get
306/296 = 1.0337837837837837837837837837838
V2= 1.03L
To solve this, let's assume ideal gas behavior.
PV=nRT
Let's solve for n. Convert units to SI units first.
Pressure = 833 torr(101325 Pa/760 torr) = 111,057.53 Pa
Volume = 250 mL(1 L/1000 mL)(1 m³/1000 L) = 2.5×10⁻⁴ m³
Temperature = 42.4 + 273 = 315.4 K
n = (8,314 J/mol·K)(315.4 K)/(111057.53 Pa)(2.5×10⁻⁴ m³)
n = 94.45 mol
The molar mass of ammonia is 17.031 g/mol.
Mass = 94.45*17.031 = <em>1,608.51 g ammonia</em>