Answer: N has to be lesser than or equal to 1666.
Explanation:
Cost of parts N in FPGA = $15N
Cost of parts N in gate array = $3N + $20000
Cost of parts N in standard cell = $1N + $100000
So,
15N < 3N + 20000 lets say this is equation 1
(cost of FPGA lesser than that of gate array)
Also. 15N < 1N + 100000 lets say this is equation 2
(cost of FPGA lesser than that of standardcell)
Now
From equation 1
12N < 20000
N < 1666.67
From equation 2
14N < 100000
N < 7142.85
AT the same time, Both conditions must hold true
So N <= 1666 (Since N has to be an integer)
N has to be lesser than or equal to 1666.
Answer:
i)ω=3600 rad/s
ii)V=7059.44 m/s
iii)F=1245.8 N
Explanation:
i)
We know that angular speed given as
![\omega =\dfrac{d\theta}{dt}](https://tex.z-dn.net/?f=%5Comega%20%3D%5Cdfrac%7Bd%5Ctheta%7D%7Bdt%7D)
We know that for one revolution
θ=2π
Given that time t= 2 hr
So
ω=θ/t
ω=2π/2 = π rad/hr
ω=3600 rad/s
ii)
Average speed V
![V=\sqrt{\dfrac{GM}{R}}](https://tex.z-dn.net/?f=V%3D%5Csqrt%7B%5Cdfrac%7BGM%7D%7BR%7D%7D)
Where M is the mass of earth.
R is the distance
G is the constant.
Now by putting the values
![V=\sqrt{\dfrac{GM}{R}}](https://tex.z-dn.net/?f=V%3D%5Csqrt%7B%5Cdfrac%7BGM%7D%7BR%7D%7D)
![V=\sqrt{\dfrac{6.667\times 10^{-11}\times 5.98\times 10^{24}}{8000\times 10^3}}](https://tex.z-dn.net/?f=V%3D%5Csqrt%7B%5Cdfrac%7B6.667%5Ctimes%2010%5E%7B-11%7D%5Ctimes%205.98%5Ctimes%2010%5E%7B24%7D%7D%7B8000%5Ctimes%2010%5E3%7D%7D)
V=7059.44 m/s
iii)
We know that centripetal fore given as
![F=\dfrac{mV^2}{R}](https://tex.z-dn.net/?f=F%3D%5Cdfrac%7BmV%5E2%7D%7BR%7D)
Here given that m= 200 kg
R= 8000 km
so now by putting the values
![F=\dfrac{mV^2}{R}](https://tex.z-dn.net/?f=F%3D%5Cdfrac%7BmV%5E2%7D%7BR%7D)
![F=\dfrac{200\times 7059.44^2}{8000\times 10^3}](https://tex.z-dn.net/?f=F%3D%5Cdfrac%7B200%5Ctimes%207059.44%5E2%7D%7B8000%5Ctimes%2010%5E3%7D)
F=1245.8 N
Answer:
![Q=hA(T_{w}-T_{inf})=16.97*0.5(27-300)=-2316.4J](https://tex.z-dn.net/?f=Q%3DhA%28T_%7Bw%7D-T_%7Binf%7D%29%3D16.97%2A0.5%2827-300%29%3D-2316.4J)
Explanation:
To solve this problem we use the expression for the temperature film
![T_{f}=\frac{T_{\inf}+T_{w}}{2}=\frac{300+27}{2}=163.5](https://tex.z-dn.net/?f=T_%7Bf%7D%3D%5Cfrac%7BT_%7B%5Cinf%7D%2BT_%7Bw%7D%7D%7B2%7D%3D%5Cfrac%7B300%2B27%7D%7B2%7D%3D163.5)
Then, we have to compute the Reynolds number
![Re=\frac{uL}{v}=\frac{10\frac{m}{s}*0.5m}{16.96*10^{-6}\rfac{m^{2}}{s}}=2.94*10^{5}](https://tex.z-dn.net/?f=Re%3D%5Cfrac%7BuL%7D%7Bv%7D%3D%5Cfrac%7B10%5Cfrac%7Bm%7D%7Bs%7D%2A0.5m%7D%7B16.96%2A10%5E%7B-6%7D%5Crfac%7Bm%5E%7B2%7D%7D%7Bs%7D%7D%3D2.94%2A10%5E%7B5%7D)
Re<5*10^{5}, hence, this case if about a laminar flow.
Then, we compute the Nusselt number
![Nu_{x}=0.332(Re)^{\frac{1}{2}}(Pr)^{\frac{1}{3}}=0.332(2.94*10^{5})^{\frac{1}{2}}(0.699)^{\frac{1}{3}}=159.77](https://tex.z-dn.net/?f=Nu_%7Bx%7D%3D0.332%28Re%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%28Pr%29%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%3D0.332%282.94%2A10%5E%7B5%7D%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%280.699%29%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%3D159.77)
but we also now that
![Nu_{x}=\frac{h_{x}L}{k}\\h_{x}=\frac{Nu_{x}k}{L}=\frac{159.77*26.56*10^{-3}}{0.5}=8.48\\](https://tex.z-dn.net/?f=Nu_%7Bx%7D%3D%5Cfrac%7Bh_%7Bx%7DL%7D%7Bk%7D%5C%5Ch_%7Bx%7D%3D%5Cfrac%7BNu_%7Bx%7Dk%7D%7BL%7D%3D%5Cfrac%7B159.77%2A26.56%2A10%5E%7B-3%7D%7D%7B0.5%7D%3D8.48%5C%5C)
but the average heat transfer coefficient is h=2hx
h=2(8.48)=16.97W/m^{2}K
Finally we have that the heat transfer is
![Q=hA(T_{w}-T_{inf})=16.97*0.5(27-300)=-2316.4J](https://tex.z-dn.net/?f=Q%3DhA%28T_%7Bw%7D-T_%7Binf%7D%29%3D16.97%2A0.5%2827-300%29%3D-2316.4J)
In this solution we took values for water properties of
v=16.96*10^{-6}m^{2}s
Pr=0.699
k=26.56*10^{-3}W/mK
A=1*0.5m^{2}
I hope this is useful for you
regards
Answer:3.47 m
Explanation:
Given
Temperature(T)=300 K
velocity(v)=1.5 m/s
At 300 K
![\mu =1.846 \times 10^{-5} Pa-s](https://tex.z-dn.net/?f=%5Cmu%20%3D1.846%20%5Ctimes%2010%5E%7B-5%7D%20Pa-s)
![\rho =1.77 kg/m^3](https://tex.z-dn.net/?f=%5Crho%20%3D1.77%20kg%2Fm%5E3)
And reynold's number is given by
![Re.=\frac{\rho v\time x}{\mu }](https://tex.z-dn.net/?f=Re.%3D%5Cfrac%7B%5Crho%20v%5Ctime%20x%7D%7B%5Cmu%20%7D)
![5\times 10^5=\frac{1.77\times 1.5\times x}{1.846\times 10^{-5}}](https://tex.z-dn.net/?f=5%5Ctimes%2010%5E5%3D%5Cfrac%7B1.77%5Ctimes%201.5%5Ctimes%20x%7D%7B1.846%5Ctimes%2010%5E%7B-5%7D%7D)
![x=\frac{5\times 10^5\times 1.846\times 10^{-5}}{1.77\times 1.5}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B5%5Ctimes%2010%5E5%5Ctimes%201.846%5Ctimes%2010%5E%7B-5%7D%7D%7B1.77%5Ctimes%201.5%7D)
x=3.47 m
Answer: Coefficient= 0.35 per day
Explanation:
To find the bio degradation reaction rate coefficient, we have
k= ![\frac{(Cin)(Qin)-(Cout)(Qout)}{(Clagoon)V}](https://tex.z-dn.net/?f=%5Cfrac%7B%28Cin%29%28Qin%29-%28Cout%29%28Qout%29%7D%7B%28Clagoon%29V%7D)
Here, the C lagoon= 20 mg/L
Q in= Q out= 8640 m³/d
C in= 100 mg/L
C out= 20 mg/L
V= 10 ha* 1* 10
V= 10⁵ m³
So, k= ![\frac{8640*100-8640*20}{20*10^5}](https://tex.z-dn.net/?f=%5Cfrac%7B8640%2A100-8640%2A20%7D%7B20%2A10%5E5%7D)
k= 0.35 per day