1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Setler79 [48]
3 years ago
15

Car B is traveling a distance dd ahead of car A. Both cars are traveling at 60 ft/s when the driver of B suddenly applies the br

akes, causing his car to decelerate at ft/s^2. It takes the driver of car A 0.75 s to react (this is the normal reaction time for drivers). When he applies his brakes, he decelerates at 18 ft/s^2.
Required:
Determine the minimum distance d between the cars so as to avoid a collision.
Engineering
1 answer:
vagabundo [1.1K]3 years ago
3 0

Answer:

Explanation:

Using the kinematics equation v = v_o + a_ct to determine the velocity of car B.

where;

v_o = initial velocity

a_c = constant deceleration

Assuming the constant deceleration is = -12 ft/s^2

Also, the kinematic equation that relates to the distance with the time is:

S = d + v_ot + \dfrac{1}{2}at^2

Then:

v_B = 60-12t

The distance traveled by car B in the given time (t) is expressed as:

S_B = d + 60 t - \dfrac{1}{2}(12t^2)

For car A, the needed time (t) to come to rest is:

v_A = 60 - 18(t-0.75)

Also, the distance traveled by car A in the given time (t) is expressed as:

S_A = 60  * 0.75 +60(t-0.75) -\dfrac{1}{2}*18*(t-0.750)^2

Relating both velocities:

v_B = v_A

60-12t = 60 - 18(t-0.75)

60-12t =73.5 - 18t

60- 73.5 = - 18t+ 12t

-13.5 =-6t

t = 2.25 s

At t = 2.25s, the required minimum distance can be estimated by equating both distances traveled by both cars

i.e.

S_B = S_A

d + 60 t - \dfrac{1}{2}(12t^2) = 60  * 0.75 +60(t-0.75) -\dfrac{1}{2}*18*(t-0.750)^2

d + 60 (2.25) - \dfrac{1}{2}(12*(2.25)^2) = 60  * 0.75 +60((2.25)-0.75) -\dfrac{1}{2}*18*((2.25)-0.750)^2

d + 104.625 = 114.75

d = 114.75 - 104.625

d = 10.125 ft

You might be interested in
Please can you solve it for me I need it ​
alexandr402 [8]

umm , is  it okay if we do this on microsoft word , cuz i cant send pics of answers here...

6 0
3 years ago
A system consists of N very weakly interacting particles at a temperature T sufficiently high so that classical statistical mech
algol [13]

Answer:

the restoring force is = 3/4NKT

Explanation:

check the attached files for answer.

7 0
4 years ago
Given : f(x) = x³- 7x²+ 36 Draw the graph of f neatly on F graph paper. Clearly indicate an Intercepts and coordinates of turnin
vichka [17]

Answer:

Explanation:

xx=33 vvalues

7 0
3 years ago
6.48 programming project 1: encode/decode tic -tac-toe
natita [175]

Answer:

What do you need help with?

Explanation:

5 0
3 years ago
Here, we want to become proficient at changing units so that we can perform calculations as needed. The basic heat transfer equa
netineya [11]

Answer:

9500 kJ; 9000 Btu

Explanation:

Data:

m = 100 lb

T₁ = 25 °C

T₂ = 75 °C

Calculations:

1. Energy in kilojoules

ΔT = 75 °C - 25 °C = 50 °C  = 50 K

m = \text{100 lb} \times \dfrac{\text{1 kg}}{\text{2.205 lb}} \times \dfrac{\text{1000 g}}{\text{1 kg}}= 4.54 \times 10^{4}\text{ g}\\\\\begin{array}{rcl}q & = & mC_{\text{p}}\Delta T\\& = & 4.54 \times 10^{4}\text{ g} \times 4.18 \text{ J$\cdot$K$^{-1}$g$^{-1}$} \times 50 \text{ K}\\ & = & 9.5 \times 10^{6}\text{ J}\\ & = & \textbf{9500 kJ}\\\end{array}

2. Energy in British thermal units

\text{Energy} = \text{9500 kJ} \times \dfrac{\text{1 Btu}}{\text{1.055 kJ}} = \text{9000 Btu}

7 0
3 years ago
Other questions:
  • I need solution for this question please ​
    7·2 answers
  • A six-lane freeway (three lanes in each direction) currently operates at maximum LOS C conditions. The lanes are 11 ft wide, the
    5·1 answer
  • Part A - Transmitted power A solid circular rod is used to transmit power from a motor to a machine. The diameter of the rod is
    8·1 answer
  • I need solution for this question ​
    10·1 answer
  • The speed of an aircraft is given to be 260 m/s in air. If the speed of sound at that location is 330 m/s, the flight of the air
    6·1 answer
  • The driver _______
    9·2 answers
  • I have a question for you guys
    13·2 answers
  • Calculate the radius of a circular orbit for which the period is 1 day​
    13·1 answer
  • Drag each label to the correct location on the table. Match to identify permanent and temporary structures.
    15·1 answer
  • (a) calculate the moment at point "c", where point "c" is the square 3'' below the centroid
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!