Answer:
The correct answer is 199.66 grams per mole.
Explanation:
Based on law of effusion given by Graham, a gas rate of effusion is contrariwise proportionate to the square root of molecular mass, that is, rate of effusion of gas is inversely proportional to the square root of mass. Therefore,
R1/R2 = √ M2/√ M1
Here rate is the rate of effusion of the gas expressed in terms of number of mole per uni time or volume, and M is the molecular mass of the gas.
Rate Q/Rate N2 = √M of N2/ √M of Q
The molecular mass of N2 or nitrogen gas is 28 grams per mole and M of Q is molecular mass of Q and based on the question Q needs 2.67 times more to effuse in comparison to nitrogen gas, therefore, rate of Q = rate of N2/2.67
Now putting the values we get,
rate of N2/2.67/rate of N2 = √28/ √M of Q
√M of Q = √ 28 × 2.67
M of Q = (√ 28 × 2.67)²
M of Q = 199.66 grams per mole
Answer:
an increase in 1-butene was observed when t-butoxide was used
Explanation:
When a base reacts with an alkyl halide, an elimination product is formed. This reaction is an E2 reaction.
Here we are to compare the reaction of two different bases with one substrate; 2-bromobutane. Both reactions occur by the E2 mechanism but follow different transition states due to the size of the base.
The Saytzeff product, 2-butene, is obtained when the methoxide is used while the non Saytzeff product, 1-butene, is obtained when t-butoxide is used.
The Saytzeff rule is reliable in predicting the major products of simple elimination reactions of alkyl halides given the fact that a small/strong bases is used for the elimination reaction. Therefore hydroxide, methoxide and ethoxide bases give similar results for the same alkyl halide substrate. Bulky bases such as tert-butoxide tend to yield a higher percentage of the non Saytzeff product and this is usually attributed to steric hindrance.
Answer:
[OH⁻] = 3.34x10⁻³M; Percent ionization = 0.54%; pH = 11.52
Explanation:
Kb of the reaction:
NH3 + H2O(l) ⇄ NH4+ + OH-
Is:
Kb = 1.8x10⁻⁵ = [NH₄⁺] [OH⁻] / [NH₃]
<em>As all NH₄⁺ and OH⁻ comes from the same source we can write: </em>
<em>[NH₄⁺] = [OH⁻] = X</em>
<em>And as </em>[NH₃] = 0.619M
1.8x10⁻⁵ = [X] [X] / [0.619M]
1.11x10⁻⁵ = X²
3.34x10⁻³ = X = [NH₄⁺] = [OH⁻]
<h3>[OH⁻] = 3.34x10⁻³M</h3><h3 />
% ionization:
[NH₄⁺] / [NH₃] * 100 = 3.34x10⁻³M / 0.619M * 100 = 0.54%
pH:
As pOH = -log [OH-]
pOH = 2.48
pH = 14 - pOH
<h3>pH = 11.52</h3>
Answer:
1. The product has a higher Rf value on a silica gel TLC plate because it is more polar than the starting methyl benzoate.
2. False
3. True
Explanation:
In chromatography, there is a stationary phase and a mobile phase. The ratio of the distance moved by a component and the distance moved by the solvent gives the retention factor (Rf).
Since silica gel is a polar solvent, it will retain the more polar product methyl m-nitrobenzoate compared to the methyl benzoate starting material.
In comparing the electrophillic aromatic substitution of m-nitrobenzoate and methyl benzoate, we must remember that the presence of electron withdrawing groups (such as -NO2 and -CHO) on the aromatic compound deactivates the compound towards electrophillic aromatic substitution hence, methyl m-nitrobenzoate is less reactive than methyl benzoate in Electrophilic Aromatic Substition and Methyl benzoate is less reactive than benzene in Electrophilic Aromatic Substition
Methanoic acid has a molecular formula of HCOOH, when form an ester it's HCOO-, so the rest of the ester is -C4H9, a saturated 4 carbon chain. As shown in the attached diagram, there are 4 structural isomers, and the third isomer has 2 stereoisomers. So the answers is D:5.