<span>Balanced chemial equation:
2NaI(aq)+Hg2(NO3)2(aq) →Hg2 I2 (s) + 2 NaNO3 (aq)
You can see it better if I use latex:

As per the phases this is the interpretation:
The symbols (aq) stands for aquous meaning that the compound is dissolved in water.
The symbol (s) stands for solid, meaning tha the compound precipitate and is not dissolved in water.</span><span>
</span>
The values of the coefficients would be 4, 5, 4, and 6 respectively.
<h3>Balancing chemical equations</h3>
The equation of the reaction can be represented by the following chemical equation:
ammonia (g) + oxygen (g) ---> nitrogen monoxide (g) + water (g)
+
--->
+ 
Thus, the coefficient of ammonia will be 4, that of oxygen will be 5, that of nitrogen monoxide will be 4, and that of water will be 6.
More on balancing chemical equations can be found here: brainly.com/question/15052184
#SPJ1
The decomposition time : 7.69 min ≈ 7.7 min
<h3>Further explanation</h3>
Given
rate constant : 0.029/min
a concentration of 0.050 mol L to a concentration of 0.040 mol L
Required
the decomposition time
Solution
The reaction rate (v) shows the change in the concentration of the substance (changes in addition to concentrations for reaction products or changes in concentration reduction for reactants) per unit time
For first-order reaction :
[A]=[Ao]e^(-kt)
or
ln[A]=-kt+ln(A0)
Input the value :
ln(0.040)=-(0.029)t+ln(0.050)
-3.219 = -0.029t -2.996
-0.223 =-0.029t
t=7.69 minutes