That due to the specific tasks that needs to be accomplished by each program to make an all encompassing program would be inefficient and full of bugs
This question is incomplete, the complete question is;
For a steel alloy it has been determined that a carburizing heat treatment of 11.3 h duration at Temperature T1 will raise the carbon concentration to 0.44 wt% at a point 1.8 mm from the surface. A separate experiment is performed at T2 that doubles the diffusion coefficient for carbon in steel.
Estimate the time necessary to achieve the same concentration at a 4.9 mm position for an identical steel and at the same carburizing temperature T2.
Answer:
the required time to achieve the same concentration at a 4.9 is 83.733 hrs
Explanation:
Given the data in the question;
treatment time t₁ = 11.3 hours
Carbon concentration = 0.444 wt%
thickness at surface x₁ = 1.8 mm = 0.0018 m
thickness at identical steel x₂ = 4.9 mm = 0.0049 m
Now, Using Fick's second law inform of diffusion
/ Dt = constant
where D is constant
then
/ t = constant
/ t₁ =
/ t₂
t₂ = t₁
t₂ = t₁
/ 
t₂ = (
/
)t₁
t₂ =
/
× t₁
so we substitute
t₂ =
0.0049 / 0.0018
× 11.3 hrs
t₂ = 7.41 × 11.3 hrs
t₂ = 83.733 hrs
Therefore, the required time to achieve the same concentration at a 4.9 is 83.733 hrs
Answer:
/* C Program to rotate matrix by 90 degrees */
#include<stdio.h>
int main()
{
int matrix[100][100];
int m,n,i,j;
printf("Enter row and columns of matrix: ");
scanf("%d%d",&m,&n);
/* Enter m*n array elements */
printf("Enter matrix elements: \n");
for(i=0;i<m;i++)
{
for(j=0;j<n;j++)
{
scanf("%d",&matrix[i][j]);
}
}
/* matrix after the 90 degrees rotation */
printf("Matrix after 90 degrees roration \n");
for(i=0;i<n;i++)
{
for(j=m-1;j>=0;j--)
{
printf("%d ",matrix[j][i]);
}
printf("\n");
}
return 0;
}