Answer:
![\left[\begin{array}{ccccc}&DF&SS&MS&F\\Regression&1&7200&7200&72\\Error&18&1800&100\\total&19&900\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D%26DF%26SS%26MS%26F%5C%5CRegression%261%267200%267200%2672%5C%5CError%2618%261800%26100%5C%5Ctotal%2619%26900%5Cend%7Barray%7D%5Cright%5D)
Explanation:
Sample size, n=20
Degrees of freedom is 1
Number of degrees of freedom for error is n-2 hence 20-2=18
Total number of degrees of freedom is 18+1=19
Standard error estimate is
Here,
Coefficient of determination
Here,
The total sum of squares is
SS total=SSR+SSE=7200+1800=9000
MSR=SSR=7200
F value is given by
The ANOVA table is then
Answer:
hello some parts of your question is missing attached below is the missing part ( the required fig and table )
answer : The solar collector surface area = 7133 m^2
Explanation:
Given data :
Rate of energy input to the collectors from solar radiation = 0.3 kW/m^2
percentage of solar power absorbed by refrigerant = 60%
Determine the solar collector surface area
The solar collector surface area = 7133 m^2
attached below is a detailed solution of the problem
Answer:
The element that is oxidized is carbon.
Its oxidation state increased. It increased from -4 to +4
Explanation:
Oxidation is a process that involves increase in oxidation number.
The oxidation number of carbon in CH4 is -4
C + (1×4) = 0
C + 4 = 0
C = 0 - 4 = -4
The oxidation number of carbon in CO2 is +4
C + (2×-2) = 0
C - 4 = 0
C = 0+4 = 4
Increase in the oxidation number of carbon from -4 to +4 means carbon is oxidized
Answer:
248.756 mV
49.7265 µA
Explanation:
The Thevenin equivalent source at one terminal of the bridge is ...
voltage: (100 V)(1000/(1000 +1000) = 50 V
impedance: 1000 || 1000 = (1000)(1000)/(1000 +1000) = 500 Ω
The Thevenin equivalent source at the other terminal of the bridge is ...
voltage = (100 V)(1010/(1000 +1010) = 100(101/201) ≈ 50 50/201 V
impedance: 1000 || 1010 = (1000)(1010)/(1000 +1010) = 502 98/201 Ω
__
The open-circuit voltage is the difference between these terminal voltages:
(50 50/201) -(50) = 50/201 V ≈ 0.248756 V . . . . open-circuit voltage
__
The current that would flow is given by the open-circuit voltage divided by the sum of the source resistance and the load resistance:
(50/201 V)/(500 +502 98/201 +4000) = 1/20110 A ≈ 49.7265 µA