To solve this problem we will apply the concepts related to the final volume of a body after undergoing a thermal expansion. To determine the temperature, we will use the given relationship as well as the theoretical value of the volumetric coefficient of thermal expansion of copper. This is, for example to the initial volume defined as
, the relation with the final volume as



Initial temperature = 
Let T be the temperature after expanding by the formula of volume expansion
we have,

Where
is the volume coefficient of copper 




Therefore the temperature is 53.06°C
Answer:
Water potential is the potential energy of water per unit volume relative to pure water in reference conditions. Water potential quantifies the tendency of water to move from one area to another due to osmosis, gravity, mechanical pressure and matrix effects such as capillary action.
Answer:
12.6 cm
Explanation:
We can use the mirror equation to find the distance of the image from the mirror:

where here we have
f = 9.50 cm is the focal length
p = 39 cm is the distance of the object from the mirror
Solving the equation for q, we find:

The heat required to change 1.25 kg of steak is 2825 kJ /kg.
<u>Explanation</u>:
Given, mass m = 1.25 kg, Temperature t = 100 degree celsius
To calculate the heat required,
Q = m
L
where m represents the mass in kg,
L represents the heat of vaporization.
When a material in the liquid state is given energy, it changes its phase from liquid to vapor and the energy absorbed in this process is called heat of the vaporization. The heat of vaporization of the water is about 2260 kJ/kg.
Q = 1.25
2260
Q = 2825 kJ /kg.