1. Define <em>Viscosity</em>
In physics, <em>Viscosity</em> refers to the level of resistance of a fluid to flow due to internal friction, in other words, viscosity is the result of the magnitude of internal friction in a fluid, as measured by the force per unit area resisting uniform flow. For example, the honey is a fluid with high viscosity while the water has low viscosity.
What are the main differences between viscous and inviscid flows?
Viscous flows are flows that has a thick, sticky consistency between solid and liquid, contain and conduct heat, does not have a rest frame mass density and whose motion at a fixed point always remains constant. Inviscid flows, on the other hand, are flows characterized for having zero viscosity (it does not have a thick, sticky consistency), for not containing or conducting heat, for the lack of steady flow and for having a rest frame mass density
Furthermore, viscous flows are much more common than inviscid flows, while this latter is often considered an idealized model since helium is the only fluid that can become inviscid.
Answer:
1790 μrad.
Explanation:
Young's modulus, E is given as 10000 ksi,
μ is given as 0.33,
Inside diameter, d = 54 in,
Thickness, t = 1 in,
Pressure, p = 794 psi = 0.794 ksi
To determine shear strain, longitudinal strain and circumferential strain will be evaluated,
Longitudinal strain, eL = (pd/4tE)(1 - 2μ)
eL = (0.794 x 54)(1 - 0.66)/(4 x 1 x 10000)
eL = 3.64 x 10-⁴ radians
Circumferential strain , eH = (pd/4tE)(2-μ)
eH = (0.794 x 54)(2 - 0.33)/(4 x 1 x 10000)
eH = 1.79 x 10-³ radians
The maximum shear strain is 1790 μrad.
It is to be noted that it is impossible to find the Maclaurin Expansion for F(x) = cotx.
<h3>What is
Maclaurin Expansion?</h3>
The Maclaurin Expansion is a Taylor series that has been expanded around the reference point zero and has the formula f(x)=f(0)+f′. (0) 1! x+f″ (0) 2! x2+⋯+f[n](0)n!
<h3>
What is the explanation for the above?</h3>
as indicated above, the Maclaurin infinite series expansion is given as:
F(x)=f(0)+f′. (0) 1! x+f″ (0) 2! x2+⋯+f[n](0)n!
If F(0) = Cot 0
F(0) = ∝ = 1/0
This is not definitive,
Hence, it is impossible to find the Maclaurin infinite series expansion for F(x) = cotx.
Learn more about Maclaurin Expansion at;
brainly.com/question/7846182
#SPJ1
Answer: (a) 36.18mm
(b) 23.52
Explanation: see attachment