Answer:
1. cout << "Num: " << songNum << endl; 
2. cout << songNum << endl;
3. cout << songNum <<" songs" << endl;
Explanation:
//Full Code
#include <iostream>
using namespace std;
int main ()
{
int songNum;
songNum = 5;
cout << "Num: " << songNum << endl; 
cout << songNum << endl;
cout << songNum <<" songs" << endl;
return 0;
}
1. The error in the first cout statement is that variable songnum is not declared.
C++ is a case sensitive programme language; it treats upper case and lower case characters differently.
Variable songNum was declared; not songnum.
2. Cout us used to print a Variable that has already been declared.
The error arises in int songNum in the second cout statement.
3. When printing more than one variables or values, they must be separated with <<
 
        
             
        
        
        
Answer:
The answer is "+9.05 kw"
Explanation:
In the given question some information is missing which can be given in the following attachment.
The solution to this question can be defined as follows:
let assume that flow is from 1 to 2 then
Q= 1kw
m=0.1 kg/s
From the steady flow energy equation is:
![m\{n_1+ \frac{v^2_1}{z}+ gz_1 \}+Q= m \{h_2+ \frac{v^2_2}{2}+ gz_2\}+w\\\\\ change \ energy\\\\0.1[1.005 \times 800]-1= 0.01[1.005\times 700]+w\\\\w= +9.05 \ kw\\\\](https://tex.z-dn.net/?f=m%5C%7Bn_1%2B%20%5Cfrac%7Bv%5E2_1%7D%7Bz%7D%2B%20gz_1%20%5C%7D%2BQ%3D%20m%20%5C%7Bh_2%2B%20%5Cfrac%7Bv%5E2_2%7D%7B2%7D%2B%20gz_2%5C%7D%2Bw%5C%5C%5C%5C%5C%20change%20%5C%20energy%5C%5C%5C%5C0.1%5B1.005%20%5Ctimes%20800%5D-1%3D%200.01%5B1.005%5Ctimes%20700%5D%2Bw%5C%5C%5C%5Cw%3D%20%2B9.05%20%5C%20kw%5C%5C%5C%5C)
If the sign of the work performed is positive, it means the work is done on the surrounding so, that the expected direction of the flow is right.
 
        
             
        
        
        
Answer:
See explanation below. 
Explanation:
For this case the program needs to take the inputs as P,r and n and the output would be as A and printed on the system. The code is:
# Inputs
P = float(input("Enter the present value : "))  
r = float(input("Enter your APR : "))  
n = float(input("Enter the number of years : ") )
# Output
A = P*(1 +(r/100))**n
print("The future values is:", A)  
And the result obtained is:
Enter the present value : 1000
Enter your APR : 0.95
Enter the number of years : 5
The future values is: 1048.4111145526908
 
        
             
        
        
        
Answer:
Chemical engineering is the branch of engineering that deals with chemical production and the manufacture of products through chemical processes
Explanation:
 
        
             
        
        
        
Answer:
Current Relative Humidity is 29.623
Given:
Current Temperature, 
Dew point temperature, 
Solution:
Now, in order to calculate the Relative Humidity, RH, we use the given formula:

where
a = 17.625
b = 237.7
Now, using the above formula and given values:




On solving the above eqn, we get:
RH = 29.623