Answer:
0.11 mol
Explanation:
<em>This is the chemical formula for acetic acid (the chemical that gives the sharp taste to vinegar): CH₃CO₂H. An analytical chemist has determined by measurements that there are 0.054 moles of oxygen in a sample of acetic acid. How many moles of hydrogen are in the sample?</em>
Step 1: Given data
- Formula of acetic acid: CH₃CO₂H
- Moles of oxygen in the sample of acetic acid: 0.054 moles
Step 2: Establish the appropriate molar ratio
According to the chemical formula of acetic acid, the molar ratio of H to O is 4:2.
Step 3: Calculate the moles of atoms of hydrogen
We will use the theoretical molar ratio for acetic acid.
0.054 mol O × (4 mol H/2 mol O) = 0.11 mol H
Answer:

Explanation:
The two requirements for a measurement are a <u>number</u> and a <u>unit.</u>
For example, here is a measurement:
38.6 cm
The <u>number</u> is 38.6 and the <u>unit</u> is cm, or centimeters.
Therefore, both <em>number </em>and <em>unit</em> are correct.
Answer:
Carbon and Oxygen, Argon and Helium.
Explanation:
noble gases have full outer shells of electrons, and so cannot share other atoms' electrons to form bonds. sodium and chlorine form an ionic bond.
Answer:
lattice parameter = 5.3355x10^-8 cm
atomic radius = 2.3103x10^-8 cm
Explanation:
known data:
p=0.855 g/cm^3
atomic mass = 39.09 g/mol
atoms/cell = 2 atoms
Avogadro number = 6.02x10^23 atom/mol
a) the lattice parameter:
Since potassium has a cubic structure, its volume is equal to:
v = [(atoms/cell)x(atomic mass)/(p)x(Avogadro number)]
substituting values:
v =[(2)x(39.09)/(0.855x6.02x10^23)]=1.5189x10^-22 cm^3
but as the cell volume is
a^3 =v
cm
for a BCC structure, the atomic radius is equal to
