Answer:
0.699 L of the fluid will overflow
Explanation:
We know that the change in volume ΔV = V₀β(T₂ - T₁) where V₀ = volume of radiator = 21.1 L, β = coefficient of volume expansion of fluid = 400 × 10⁻⁶/°C
and T₁ = initial temperature of radiator = 12.2°C and T₂ = final temperature of radiator = 95.0°C
Substituting these values into the equation, we have
ΔV = V₀β(T₂ - T₁)
= 21.1 L × 400 × 10⁻⁶/°C × (95.0°C - 12.2°C)
= 21.1 L × 400 × 10⁻⁶/°C × 82.8°C = 698832 × 10⁻⁶ L
= 0.698832 L
≅ 0.699 L = 0.7 L to the nearest tenth litre
So, 0.699 L of the fluid will overflow
Answer:
Speed of the this part is given as

Also the direction of the velocity of the third part of plate is moving along 135 degree with respect to one part of the moving plate
Explanation:
As we know by the momentum conservation of the system
we will have

here we know that

the momentum of two parts are equal in magnitude but perpendicular to each other
so we will have


now from above equation we have



Also the direction of the velocity of the third part of plate is moving along 135 degree with respect to one part of the moving plate
Let's ask this question step by step:
Part A)
a x b = (3.0i + 5.0j) x (2.0i + 4.0j) = (12-10) k = 2k
ab = (3.0i + 5.0j). (2.0i + 4.0j) = 6 + 20 = 26
Part (c)
(a + b) b = [(3.0i + 5.0j) + (2.0i + 4.0j)]. (2.0i + 4.0j)
(a + b) b = (5.0i + 9.0j). (2.0i + 4.0j)
(a + b) b = 10 + 36
(a + b) b = 46
Part (d)
comp (ba) = (a.b) / lbl
a.b = (3.0i + 5.0j). (2.0i + 4.0j) = 6 + 20 = 26
lbl = root ((2.0) ^ 2 + (4.0) ^ 2) = root (20)
comp (ba) = 26 / root (20)
answer
2k
26
46
26 / root (20)
Answer:
The energy of the capacitors connected in parallel is 0.27 J
Given:
C = 
C' =
Potential difference, V = 300 V
Solution:
Now, we know that the equivalent capacitance of the two parallel connected capacitors is given by:

The energy of the capacitor, E is given by;

