Answer:
3120J
Explanation:
Given parameters:
C = Specific heat capacity = 0.8J/g°C
Initial temperature = 20°C
Mass given = 5g
Final temperature = 800°C
Unknown:
Energy given to the mass = ?
Solution:
To find the energy given to the mass, let us simply use the expression below:
H = m c ΔT
H is the unknown, the energy supplied
m is the mass of the substance
c is the specific heat capacity
ΔT is the change in temperature
Input the variables;
H = 5 x 0.8 x (800 - 20) = 3120J
Answer:
K.E = 0.0075 J
Explanation:
Given data:
Mass of the ball = 1.5 kg
radius, r = 50 cm = 0.5 m
Angular speed, ω = 12 rev/min = (12/60) rev/sec = 0.2 rev/sec
Now,
the kinetic energy is given as:
K.E = 
where,
I is the moment of inertia = mr²
on substituting the values, we get

or
K.E = 0.0075 J
<span>The speed of sound needs to be given, in the proper form. This will allow for the proper conversion (namely, a multiplication by the Mach rate) to find the actual speed that the aircraft is traveling, compared to how fast sound travels.</span>
Answer:
it snaps
Explanation:
the more force you put on it, the wired out it gets than it snaps. I think
Answer:
<h3>Power = Work Done/time</h3>
=> Power = 60×10×10/60
=> Power = 6000/60
=> Power = 100 Watt
Hence the power output of a pump is 100 Watts.