Answer:
Mass
Step-by-step explanation:
Usually, you plot the independent variable along the horizontal (x) axis and the dependent variable along the vertical (y) axis.
Marcia's teacher plotted the mass of the sample along the x-axis and volume along the y-axis.
The mass is the independent variable, because that is <em>what the teacher varied</em>.
The volume is the <em>dependent variable</em>, because it <em>depends</em> on the mass.
Sample number is <em>wrong</em>, because it is not a variable.
Substance is <em>wrong</em>, because all samples consist of the same substance.
Density is <em>wrong</em>, because it is constant. It is the slope of the graph.
Answer:

Explanation:
Hello there!
In this case, since these problems about gas mixtures are based off Dalton's law in terms of mole fraction, partial pressure and total pressure, we can write the following for hydrogen, we are given its partial pressure:

And can be solved for the total pressure as follows:

However, we first calculate the mole fraction of hydrogen by subtracting that of nitrogen to 1 due to:

Then, we can plug in to obtain the total pressure:

Regards!
Most Favored Nation status is an economic position in which a country enjoys the best trade terms given by its trading partner. That means it receives the lowest tariffs, the fewest trade barriers, and the highest import quotas (or none at all).
I got this from google, hope it helps! :)
Answer:
see explanation below
Explanation:
First to all, this is a redox reaction, and the reaction taking place is the following:
2KMnO4 + 3H2SO4 + 5H2O2 -----> 2MnSO4 + K2SO4 + 8H2O + 5O2
According to this reaction, we can see that the mole ratio between the peroxide and the permangante is 5:2. Therefore, if the titration required 21.3 mL to reach the equivalence point, then, the moles would be:
MhVh = MpVp
h would be the hydrogen peroxide, and p the permanganate.
But like it was stated before, the mole ratio is 5:2 so:
5MhVh = 2MpVp
Replacing moles:
5nh = 2MpVp
Now, we just have to replace the given data:
nh = 2MpVp/5
nh = 2 * 1.68 * 0.0213 / 5
nh = 0.0143 moles
Now to get the mass, we just need the molecular mass of the peroxide:
MM = 2*1 + 2*16 = 34 g/mol
Finally the mass:
m = 0.0143 * 34
m = 0.4862 g
Answer:
bshshbahsbebhshshshshsuuxuxhebusisj