Answer:
1.144 A
Explanation:
given that;
the length of the wire = 2.0 mm
the diameter of the wire = 1.0 mm
the variable resistivity R = ![\rho (x) =(2.5*10^{-6})[1+(\frac{x}{1.0 \ m})^2]](https://tex.z-dn.net/?f=%5Crho%20%28x%29%20%3D%282.5%2A10%5E%7B-6%7D%29%5B1%2B%28%5Cfrac%7Bx%7D%7B1.0%20%5C%20m%7D%29%5E2%5D)
Voltage of the battery = 17.0 v
Now; the resistivity of the variable (dR) can be expressed as = 
![dR = \frac{(2.5*10^{-6})[1+(\frac{x}{1.0})^2]}{\frac{\pi}{4}(10^{-3})^2}](https://tex.z-dn.net/?f=dR%20%3D%20%5Cfrac%7B%282.5%2A10%5E%7B-6%7D%29%5B1%2B%28%5Cfrac%7Bx%7D%7B1.0%7D%29%5E2%5D%7D%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%2810%5E%7B-3%7D%29%5E2%7D)
Taking the integral of both sides;we have:
![\int\limits^R_0 dR = \int\limits^2_0 3.185 \ [1+x^2] \ dx](https://tex.z-dn.net/?f=%5Cint%5Climits%5ER_0%20%20dR%20%3D%20%5Cint%5Climits%5E2_0%203.185%20%5C%20%5B1%2Bx%5E2%5D%20%5C%20dx)
![R = 3.185 [x + \frac {x^3}{3}}]^2__0](https://tex.z-dn.net/?f=R%20%3D%203.185%20%5Bx%20%2B%20%5Cfrac%20%7Bx%5E3%7D%7B3%7D%7D%5D%5E2__0)
![R = 3.185 [2 + \frac {2^3}{3}}]](https://tex.z-dn.net/?f=R%20%3D%203.185%20%5B2%20%2B%20%5Cfrac%20%7B2%5E3%7D%7B3%7D%7D%5D)
R = 14.863 Ω
Since V = IR


I = 1.144 A
∴ the current if this wire if it is connected to the terminals of a 17.0V battery = 1.144 A
Answer:
The fraction fraction of the final energy is stored in an initially uncharged capacitor after it has been charging for 3.0 time constants is

Explanation:
From the question we are told that
The time constant 
The potential across the capacitor can be mathematically represented as

Where
is the voltage of the capacitor when it is fully charged
So at


Generally energy stored in a capacitor is mathematically represented as

In this equation the energy stored is directly proportional to the the square of the potential across the capacitor
Now since capacitance is constant at
The energy stored can be evaluated at as


Hence the fraction of the energy stored in an initially uncharged capacitor is

Fruit flies prefer mates adapted to the same food source.