1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SashulF [63]
3 years ago
13

When entering an expressway, in the acceleration lane you should: A search for a gap in traffic and adjust your speed to the spe

ed of the traffic. B set the cruise control for highway speed. C make a complete stop and check traffic for a suitable gap. D get as close to the vehicle ahead as possible so you can merge into the same gap.
Physics
1 answer:
sattari [20]3 years ago
3 0

Answer:A

Explanation: search for a gap in traffic and adjust your speed to the speed of the traffic.

You might be interested in
A 1.50-kg iron horseshoe initially at 550°C is dropped into a bucket containing 25.0 kg of water at 20.0°C. What is the final te
Ber [7]

Answer:

Te =  23.4 °C

Explanation:

Given:-

- The mass of iron horseshoe, m = 1.50 kg

- The initial temperature of horseshoe, Ti_h = 550°C

- The specific heat capacity of iron, ci = 448 J/kgC

- The mass of water, M = 25 kg

- The initial temperature of water, Ti_w = 20°C

- The specific heat capacity of water, cw = 4186 J/kgC

Find:-

What is the final temperature of the water–horseshoe system?

Solution:-

- The interaction of horseshoe and water at their respective initial temperatures will obey the Zeroth and First Law of thermodynamics. The horseshoe at higher temperature comes in thermal equilibrium with the water at lower temperature. We denote the equilibrium temperature as (Te) and apply the First Law of thermodynamics on the system:

                             m*ci*( Ti_h - Te) = M*cw*( Te - Ti_w )

- Solve for (Te):

                             m*ci*( Ti_h ) + M*cw*( Ti_w ) = Te* (m*ci + M*cw )

                             Te = [ m*ci*( Ti_h ) + M*cw*( Ti_w ) ] / [ m*ci + M*cw ]

- Plug in the values and evaluate (Te):

                             Te = [1.5*448*550 + 25*4186*20 ] / [ 1.5*448 + 25*4186 ]

                             Te = 2462600 / 105322

                             Te =  23.4 °C    

7 0
3 years ago
Read 2 more answers
The kinetic energies of particles in a sample of matter are increasing. This sample is most likely
Sedaia [141]

Answer:

The sample is most likely gaining thermal energy

Explanation:

4 0
3 years ago
Read 2 more answers
A person in a kayak starts paddling, and it accelerates from 0 to 0.61 m/s in a distance of 0.39 m. If the combined mass of the
Iteru [2.4K]

Answer:

35.3 N

Explanation:

U = 0, V = 0.61 m/s, s = 0.39 m

Let a be the acceleration.

Use third equation of motion

V^2 = u^2 + 2 as

0.61 × 0.61 = 0 + 2 × a × 0.39

a = 0.477 m/s^2

Force = mass × acceleration

F = 74 × 0.477 = 35.3 N

6 0
3 years ago
(25 pts) Estimate how much collector area and storage capacity would be required for an active solar hot-water system designed t
Aneli [31]

Answer:

The required  total area is 1.48 m²

Explanation:

Given that,

Latitude = 44+° N

New Mexico,

Latitude= 35+° N

Heat capacity = 4200 J/Kg°C

Temperature = 60°C

Let us assume the input temperature 22°C

Estimate volume of water 100 ltr for 4 person.

We need to calculate the heat

Using formula of heat

H=mc_{p}\Delta T

H=mc_{p}(T_{f}-T_{i})

Put the value into the formula

H=100\times4200\times(60-22)

H=15960\ KJ...(I)

Let solar radiation for 6 hours/day.

We need to calculate the total energy per unit area

Using formula of energy

E=1000\times6\times3600\ J/m^2

E=21600\ KJ/m^2

Let the efficiency of collector is 50 %

Then,  the total energy per unit area will be

E=21600\times\dfrac{50}{100}

E=10800\ KJ/m^2....(II)

We need to calculate the required total area

Using equation (I) and (II)

A=\dfrac{H}{E}

Where, H = heat

E = total energy

Put the value into the formula

A=\dfrac{15960}{10800}

A=1.48\ m^2

Hence, The required  total area is 1.48 m²

6 0
3 years ago
HELP PLS.<br><br><br>What are the characteristics of the three states of matter?
vredina [299]

Matter can exist in one of three main states: solid, liquid, or gas. Solid matter is composed of tightly packed particles. A solid will retain its shape; the particles are not free to move around. Liquid matter is made of more loosely packed particles. Hopefully this helps:)

5 0
3 years ago
Read 2 more answers
Other questions:
  • What mass of silver can be plated onto an object in 33.5 minutes at 8.70 a of current? ag (aq e- ? ag(s what mass of silver can
    14·2 answers
  • What is the difference between simple and compound machines?
    13·1 answer
  • What is the value of the temperature 15 degrees Celsius in degrees Kelvin?
    11·1 answer
  • The angle of incidence at a solid/liquid boundary is 59.6a?°, and the index of refraction of the solid is n = 1.55. (a what must
    14·1 answer
  • Darryl finds a bottle of what looks like clear water, with dirt settled at the bottom. When he shakes the bottle, the water gets
    8·1 answer
  • Batteries (e.g., lead-acid batteries) store chemical energy and convert it to electric energy on demand. Batteries do not store
    9·1 answer
  • Dr. John Paul Stapp was a U.S. Air Force officer who studied the effects of extreme acceleration on the human body. On December
    15·1 answer
  • What would the current be for a circuit that has a voltage of 0.8 V and a resistance of 0.01 Q?
    11·1 answer
  • A whale comes to the surface to breathe and then dives at an angle 24 degrees to the horizontal surface of the water. The whale
    13·1 answer
  • Please help ! Which of the following objects has the greatest momentum?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!