Answer:
(b) EAST
Explanation:
you can assume that the magnetic field points rightward, that is, in the positive x direction (NORTH). Furthermore, you can assume that the direction of the motion of the electron is in the positive y direction. Hence, you have:

You use the Lorentz formula to known which is the direction of the magnetic force over the electron:

which implies the cross product between the unitary vecors j and i, that is
(WEST)
However, the minus sign of the charge of the electron changes the direction 180°. Hence, the direction is k. That is, to the EAST
The distance of the canoeist from the dock is equal to length of the canoe, L.
<h3>
Conservation of linear momentum</h3>
The principle of conservation of linear momentum states that the total momentum of an isolated system is always conserved.
v(m₁ + m₂) = m₁v₁ + m₂v₂
where;
v is the velocity of the canoeist and the canoe when they are together
- u₁ is the velocity of the canoe
- u₂ velocity of the canoeist
- m₁ mass of the canoe
- m₂ mass of the canoeist
<h3>Distance traveled by the canoeist</h3>
The distance traveled by the canoeist from the back of the canoe to the front of the canoe is equal to the length of the canoe.
Thus, the distance of the canoeist from the dock is equal to length of the canoe, L.
Learn more about conservation of linear momentum here: brainly.com/question/7538238
Answer:
otherwise known as option D
Explanation:
:)