Answer:
(a) 34.47 cm
(b)
south of west
Explanation:
Let us draw a figure representing the individual displacement vectors in the four jumps as shown in the figure attached with this solution.
Now, let us try to write the four displacement vectors in in terms of unit vectors along the horizontal and the vertical axis.

Now, the vector sum of all these vector will give the resultant displacement vector.

Part (a):
The magnitude of the resultant displacement vector is given by:

Part (b):
Since the resultant displacement vector indicates that the final position of the vector lies in the third quadrant, the vector will make some positive angle in the direction south of west given by:

The management information base (MIB) is a repository of data maintained at a managing entity site, providing the network manager with a centralized, quick-to-query database regarding current network status is considered as false
Explanation:
The management information system is a formal description set of network objects that is managed by using the Simple Network management protocol.
The performance of network is measured based on the delay throughput and packet loss. There are management information system for more related entities that are managed by the companies.
This is the same question as the one previously but with more details, so I will just use my previous answer.
1800 to 1820 is 20 minutes.1830 to 1838 is 8 minutes.1840 to 1905 is 25 minutes.
The total time travelled is 20+8+25 = 53 minutes = 3180 seconds.
The distance between Glasgow and Edinburgh is 28 + 12 + 34 = 74 km = 74000 m.
So, the average speed is 74000m/3180s = 23.27 m/s (4 s.f.)
Answer:
longitudinal
Explanation:
because particles of medium through which the sound is transported vibrate parallel to the direction of the sound wave moves
Answer:
v2 = 65 m/s
the speed of the water leaving the nozzle is 65 m/s
Explanation:
Given;
Water flows at 0.65 m/s through a 3.0 cm diameter hose that terminates in a 0.3 cm diameter nozzle
Initial speed v1 = 0.65 m/s
diameter d1 = 3.0 cm
diameter (nozzle) d2 = 0.3 cm
The volumetric flow rates in both the hose and the nozzle are the same.
V1 = V2 ........1
Volumetric flow rate V = cross sectional area × speed of flow
V = Av
Area = (πd^2)/4
V = v(πd^2)/4 ....2
Substituting equation 2 to 1;
v1(πd1^2)/4 = v2(πd2^2)/4
v1d1^2 = v2d2^2
v2 = (v1d1^2)/d2^2
Substituting the given values;
v2 = (0.65 × 3^2)/0.3^2
v2 = 65 m/s
the speed of the water leaving the nozzle is 65 m/s