Step-by-step explanation:
The answer in the picture above
By the fundamental theorem of algebra, we can write

Expanding the right hand side, we get

We want
to be an integer, which means
must also be integers. This means
must be factors of 10. There are several possibilities:


So there are 4 possible values for
: -11, -7, 7, and 11.
Answer:
74
Step-by-step explanation:
What I'm getting at, is that you need to add all the hour sold cups up, and then double it because she expects to sell twice as much. 15 + 11 +5 +6 = 37, and 37 doubled is 74
Answer with Step-by-step explanation:
We are given that two matrices A and B are square matrices of the same size.
We have to prove that
Tr(C(A+B)=C(Tr(A)+Tr(B))
Where C is constant
We know that tr A=Sum of diagonal elements of A
Therefore,
Tr(A)=Sum of diagonal elements of A
Tr(B)=Sum of diagonal elements of B
C(Tr(A))=
Sum of diagonal elements of A
C(Tr(B))=
Sum of diagonal elements of B

Tr(C(A+B)=Sum of diagonal elements of (C(A+B))
Suppose ,A=![\left[\begin{array}{ccc}1&0\\1&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%5C%5C1%261%5Cend%7Barray%7D%5Cright%5D)
B=![\left[\begin{array}{ccc}1&1\\1&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%5C%5C1%261%5Cend%7Barray%7D%5Cright%5D)
Tr(A)=1+1=2
Tr(B)=1+1=2
C(Tr(A)+Tr(B))=C(2+2)=4C
A+B=![\left[\begin{array}{ccc}1&0\\1&1\end{array}\right]+\left[\begin{array}{ccc}1&1\\1&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%5C%5C1%261%5Cend%7Barray%7D%5Cright%5D%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%5C%5C1%261%5Cend%7Barray%7D%5Cright%5D)
A+B=![\left[\begin{array}{ccc}2&1\\2&2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%261%5C%5C2%262%5Cend%7Barray%7D%5Cright%5D)
C(A+B)=![\left[\begin{array}{ccc}2C&C\\2C&2C\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2C%26C%5C%5C2C%262C%5Cend%7Barray%7D%5Cright%5D)
Tr(C(A+B))=2C+2C=4C
Hence, Tr(C(A+B)=C(Tr(A)+Tr(B))
Hence, proved.
Its a rational number but also a integer and could never be a whole number because its a negative and whole numbers are always positive