Answer:
T_ww = 43,23°C
Explanation:
To solve this question, we use energy balance and we state that the energy that enters the systems equals the energy that leaves the system plus losses. Mathematically, we will have that:
E_in=E_out+E_loss
The energy associated to a current of fluid can be defined as:
E=m*C_p*T_f
So, applying the energy balance to the system described:
m_CW*C_p*T_CW+m_HW*C_p*T_HW=m_WW*C_p*T_WW+E_loss
Replacing the values given on the statement, we have:
1.0 kg/s*4,18 kJ/(kg°C)*25°C+0.8 kg/s*4,18 kJ/(kg°C)*75°C=1.8 kg/s*4,18 kJ/(kg°C)*T_WW+30 kJ/s
Solving for the temperature Tww, we have:
(1.0 kg/s*4,18 kJ/(kg°C)*25°C+0.8 kg/s*4,18 kJ/(kg°C)*75°C-30 kJ/s)/(1.8 kg/s*4,18 kJ/(kg°C))=T_WW
T_WW=43,23 °C
Have a nice day! :D
If you are stationary, but in/on a moving vehicle/object you can be at rest and moving at then same time.
<u>Explanation</u>:
- A particle, when viewed from a given frame of reference, cannot be both at rest and in motion. However, in one frame of reference, a particle can be in motion whereas in another frame of reference the particle is in motion.
- For example, if you are seated in a plane, the plane is stationary in that reference frame and the Earth moves under it, but in the reference frame of the Earth, the plane is moving concerning the Earth. When you are standing still on Earth, in your frame of reference, the Earth is stationary, and the Sun and stars move around the Earth.
- However, in the frame of reference of the center of our solar system, the Earth orbits the Sun and the Sun are perturb slightly by the rest of the planets, but the rest of the galaxy orbits our solar system. Of course, in rest from our Galaxy, our solar system orbits a giant black hole at its center.
Meiosis is the correct answer because of the fact all the other answers are no where near correct
Answer:
A.
Explanation:
Thats my answer
Please make me branlies answer