The initial velocity of go-kart is 2.5 m/s.
<u>Explanation:</u>
Here, the uniform acceleration of go-kart is given as 0.5 m/s². Also the time required by it to stop is also given as 5 s. As acceleration is the measure of change in velocity per unit time.
In this case, the velocity should be changed from a value to zero to come to rest. So the initial velocity will be positive value and final velocity is zero.
As we know the values of acceleration, final velocity and time, the initial velocity can be easily determined as follows.

Since, final velocity is zero, acceleration is 0.5 m/s² and time is 5 s, then,

Initial velocity = 0.5 × 5 = 2.5 m/s.
So the initial velocity of go-kart is 2.5 m/s.
Answer:
333.3 m
Explanation:
Given

Potential energy =
......Equation(1)
We know that
Potential energy=mgh
Kinetic energy =
Now From the Equation(1)

Answer:
R = 710.7N
L = 67.689 N
During gravity fall L = R = 0 N
Explanation:
So the acceleration that the elevator is acting on the woman (and the package) in order to result in a net acceleration of 0.15g is
g + 0.15g = 1.15g
The force R that the elevator exerts on her feet would be product of acceleration and total mass (Newton's 2nd law):
a(m + M) = 1.15g(57 + 6) = 1.15*9.81*63 = 710.7N
The force L that she exerts on the package would be:
am = 1.15g *6 = 1.15*9.81*6 = 67.689N
When the system is falling, all have a net acceleration of g. So the acceleration that the elevator exerts on the woman (and the package) is 0, and so are the forces L and R.
C.
Because it’s falling it has acceleration in the y direction. If you have acceleration, you usually also have velocity, and since kinetic energy is KE= Mv^2 you know you have it. It also has potential energy because it has some height to it, and PE= Mgh.