No is the answer your welcome well I don’t.
Answer:
The pH of the solution is 5.31.
Explanation:
Let "
is the dissociation of weak acid - HCN.
The dissociation reaction of HCN is as follows.

Initial C 0 0
Equilibrium c(1-
) c
c
Dissociation constant = 

In this case weak acids
is very small so, (1-
) is taken as 1.


From the given the concentration = 0.050 M
Substitute the given value.

![[H_{3}O^{+}]=c\alpha](https://tex.z-dn.net/?f=%5BH_%7B3%7DO%5E%7B%2B%7D%5D%3Dc%5Calpha)
![[H_{3}O^{+}]=0.05\times 9.8\times 10^{-4}= 4.9\times10^{-6}](https://tex.z-dn.net/?f=%5BH_%7B3%7DO%5E%7B%2B%7D%5D%3D0.05%5Ctimes%209.8%5Ctimes%2010%5E%7B-4%7D%3D%204.9%5Ctimes10%5E%7B-6%7D)
![pH= -log[H_{3}O^{+}]](https://tex.z-dn.net/?f=pH%3D%20-log%5BH_%7B3%7DO%5E%7B%2B%7D%5D)
![=-log[4.9\times10^{-6}]](https://tex.z-dn.net/?f=%3D-log%5B4.9%5Ctimes10%5E%7B-6%7D%5D)

Therefore, The pH of the solution is 5.31.
Oxygen hydrogen helium argon xenon krypton
neon nitrogen radon chlorine bromine fluorine
An astronomical unit (A.U.) (the average distance from Earth to Sun)
Or light years.