Force exerted by the bullet = mass * acceleration = 0.013 * 850 = 11.05 Newtons.
the rifle exerts same force in opposite direction so we have
11.05 = 3.5 * a
acceleration = 11.05 / 3.5 = 3.16 m /s^-2
Answer:
Mechanical waves need matter to transfer energy while electromagnetic waves do not. ... Waves change direction when they move from one material into another (matter) through the process of refraction. The wave will change direction when the speed of the wave changes.
Answer:
0.75 g/cm^3
Explanation:
The formula for density:

Where m is the mass and V is the volume.
So, we can substitute values for m and V:

Therefore, the density is 0.75 g/cm^3 (watch the units!)
Missing figure and missing details can be found here:
<span>http://d2vlcm61l7u1fs.cloudfront.net/media%2Fdd5%2Fdd5b98eb-b147-41c4-b2c8-ab75a78baf37%2FphpEgdSbC....
</span>
Solution:
(a) The work done by the spring is given by

where k is the elastic constant of the spring and

is the stretch between the initial and final position. Since x1=-8 in=-0.203 m and x2=5 in=0.127 m, we have

(b) The work done by the weight is the product of the component of the weight parallel to the inclined plane and the displacement of the cart:

where the negative sign is given by the fact that

points in the opposite direction of the displacement of the cart, and where

therefore, the work done by the weight is
To solve this problem it is necessary to apply the concepts related to wavelength depending on the frequency and speed. Mathematically, the wavelength can be expressed as

Where,
v = Velocity
f = Frequency,
Our values are given as
L = 3.6m
v= 192m/s
f= 320Hz
Replacing we have that


The total number of 'wavelengths' that will be in the string will be subject to the total length over the size of each of these undulations, that is,



Therefore the number of wavelengths of the wave fit on the string is 6.