Answer:
1.63425 × 10^- 18 Joules.
Explanation:
We are able to solve this kind of problem, all thanks to Bohr's Model atom. With the model we can calculate the energy required to move the electron of the hydrogen atom from the 1s to the 2s orbital.
We will be using the formula in the equation (1) below;
Energy, E(n) = - Z^2 × R(H) × [1/n^2]. -------------------------------------------------(1).
Where R(H) is the Rydberg's constant having a value of 2.179 × 10^-18 Joules and Z is the atomic number= 1 for hydrogen.
Since the Electrons moved in the hydrogen atom from the 1s to the 2s orbital,then we have;
∆E= - R(H) × [1/nf^2 - 1/ni^2 ].
Where nf = 2 = final level= higher orbital, ni= initial level= lower orbital.
Therefore, ∆E= - 2.179 × 10^-18 Joules× [ 1/2^2 - 1/1^2].
= -2.179 × 10^-18 Joules × (0.25 - 1).
= - 2.179 × 10^-18 × (- 0.75).
= 1.63425 × 10^- 18 Joules.
Answer:
it will take that explosin 15.34 millisecond
Explanation:
as the speed is 767 and distance is 50 so time will be 767/50=15.34milliseconds