Answer:
<h3> 1.40625m/s²</h3>
Explanation:
Using the equation of motion expressed as v = u+gt where;
v is the final velocity of the ball
u is the initial velocity
g is the acceleration due to gravity
t is the time taken
Given
u = 9m/s
v = 0m/s
t = 6.4s
Required
acceleration due to gravity g
Since the rock is thrown up, g will be a negative value.
v = u+(-g)t
0 = 9-6.4g
-9 = -6.4g
6.4g = 9
divide both sides by 6.4
6.4g/6.4 = 9/6.4
g = 1.40625m/s²
Hence the acceleration due to gravity on the planet is 1.40625m/s²
Answer:
The work done by the drag force is given by 29.96 J
Explanation:
Given :
Thrust force
N
Displacement
m
Mass of rocket
Kg
From work energy theorem,


Where
thrust work
gravitational work

After cutoff kinetic energy is converted into potential energy,

Put value of KE

Work done by drag force is given by,

J
Therefore, the work done by the drag force is given by 29.96 J
Answer:
mark me brainliest
Explanation:
The change of temperature at absolute scale is. A. 3.73 K
Answer:
112.5 J
Explanation:
I calculated it by K/G BY M/S TO POTENTIAL ENERGY.