It contains no large maria
Answer:
1.85 J/K
Explanation:
The computation of total change in entropy is shown below:-
Change in Entropy = Sum Q ÷ T
= 

= -3.12 + 4.97
= 1.85 J/K
Therefore for computing the total change in entropy we simply applied the above formula.
As we can see that there is heat entering the reservoir so it will be negative while cold reservoir will be positive else the process would be impossible.
Answer:
The strongest lines are at 337.1 nm wavelength in the ultraviolet. Other lines have been reported at 357.6 nm, also ultraviolet. This information refers to the second positive system of molecular nitrogen, which is by far the most common.
Explanation:
I believe the correct
form of the energy function is:
u (x) = (3.00 N)
x + (1.00 N / m^2) x^3
or in simpler
terms without the units:
u (x) = 3 x +
x^3
Since the
highest degree is power of 3, therefore there are two roots or solutions of the
equation.
Since we are to
find for the positions x in which the force equal to zero, u (x) = 0,
therefore:
3 x + x^3 = u
(x)
3 x + x^3 = 0
Taking out x:
x (3 + x^2) = 0
So one of the
factors is x = 0.
Finding for the
other two factors, we divide the two sides by x and giving us:
x^2 + 3 = 0
x^2 = - 3
x = sqrt (- 3)
x = - 1.732 i, 1.732
i
The other two
roots are imaginary therefore the force is only equal to zero when the position
is also zero.
Answer:
x = 0
Answer:
A. α = - 1.047 rad/s²
B. θ = 14.1 rad
C. θ = 2.24 rev
Explanation:
A.
We can use the first equation of motion to find the acceleration:
where,
ωf = final angular speed = 0 rad/s
ωi = initial angular speed = (30 rpm)(2π rad/1 rev)(1 min/60 s) = 3.14 rad/s
t = time = 3 s
α = angular acceleration = ?
Therefore,
<u>α = - 1.047 rad/s²</u>
B.
We can use the second equation of motion to find the angular distance:
<u>θ = 14.1 rad</u>
C.
θ = (14.1 rad)(1 rev/2π rad)
<u>θ = 2.24 rev</u>