Answer:
the maximum angular speed (in radians per second) of a Blu-ray disc as it rotates is 57.6 m/s
Explanation:
Given information:
diameter of the disc, d = 11 cm, r = 5.5 cm = 0.055 m
angular speed ω = 10000 rev/min = (10000 rev/min)(2π rad/rev)(1/60 min/s)
= 1000π/3 rad/s
to calculate the maximum angular speed we can use the following formula
ω = v/r
v = ωr
= (1000π/3)(0.055)
= 57.6 m/s
I know
the answer do you want me to help you?
Answer:
1190 N
Explanation:
Force: This can be defined as the product of mass and velocity. The unit of force is Newton(N).
From the question,
F = ma................. Equation 1
Where F = average force, m = mass, a = acceleration.
But,
a = (v-u)/t................ Equation 2
Where v = final velocity, u = initial velocity, t = time.
Substitute equation 2 into equation 1
F = m(v-u)/t.............. Equation 3
Given: m = 70 kg, v = 1.7 m/s, u = 0 m/s (from rest), t = 0.1 s.
Substitute into equation 3
F = 70(1.7-0)/0.1
F = 1190 N.
Answer:
Velocity (magnitude) is 98.37 m/s
Explanation:
We use the vertical component of the initial velocity, which is:

Using kinematics expression of vertical velocity (in y direction) for an accelerated motion (constant acceleration, which is gravity):

Now we need to find
as a function of
. We use the horizontal velocity, which is always the same as follow:

We know the angle at 3 seconds:

Substitute
in
and then solve for 

With this expression we go back to the kinematic equation and solve it for initial speed

Answer:
10.52 m
Explanation:
The power radiated by a body is given by
P = σεAT⁴ where ε = emissivity = 0.97, T = temperature = 30 C + 273 = 303 K, A = surface area of human body = 1.8 m², σ = 5.67 × 10⁻⁴ W/m²K⁴
P = σεAT⁴ = 5.67 × 10⁻⁸ W/m²K⁴ × 0.97 × 1.8 m² × (303)⁴ = 834.45 W
This is the power radiated by the human body.
The intensity I = P/A where A = 4πr² where r = distance from human body.
I = P/4πr²
r = (√P/πI)/2
If the python is able to detect an intensity of 0.60 W/m², with a power of 834.45 W emitted by the human body, the maximum distance r, is thus
r = (√P/πI)/2 = (√834.45/0.60π)/2 = 21.04/2 = 10.52 m
So, the maximum distance at which a python could detect your presence is 10.52 m.