The First Quarter Moon is a primary Moon phase when we can see exactly half of the Moon's visible surface illuminated. If it is the left or right half, depends on where you are on Earth.
22. a - (vf^2 - vi^2)/(2d)
a = (0 - 23^2)/(170)
a = -3.1 m/s^2
23. Find the time (t) to reach 33 m/s at 3 m/s^2
33-0/t = 3
33 = 3t
t = 11 sec to reach 33 m/s^2
Find the av velocuty: 33+0/2 = 16.5 m/s
Dist = 16.5 * 11 = 181.5 meters to each 33m/s speed. Runway has to be at least this long.
24. The sprinter starts from rest. The average acceleration is found from:
(Vf)^2 = (Vi)^2 = 2as ---> a = (Vf)^2 - (Vi)^2/2s = (11.5m/s)^2-0/2(15.0m) = 4.408m/s^2 estimated: 4.41m/s^2
The elapsed time is found by solving
Vf = Vi + at ----> t = vf-vi/a = 11.5m/s-0/4.408m/s^2 = 2.61s
25. Acceleration of car = v-u/t = 0ms^-1-21.0ms^-1/6.00s = -3.50ms^-2
S = v^2 - u^2/2a = (0ms^-1)^2-(21.0ms^-1)^2/2*-3.50ms^-2 = 63.0m
26. Assuming a constant deceleration of 7.00 m/s^2
final velocity, v = 0m/s
acceleration, a = -7.00m/s^2
displacement, s - 92m
Using v^2 = u^2 - 2as
0^2 - u^2 + 2 (-7.00) (92)
initial velocity, u = sqrt (1288) = 35.9 m/s
This is the speed pf the car just bore braking.
I hope this helps!!
Answer:
v = 2,99913 10⁸ m / s
Explanation:
The velocity of propagation of a wave is
v = λ f
in the case of an electromagnetic wave in a vacuum the speed that speed of light
v = c
When the wave reaches a material medium, it is transmitted through a resonant type process, whereby the molecules of the medium vibrate at the same frequency as the wave, as the speed of the wave decreases the only way that they remain the relationship is that the donut length changes in the material medium
λ = λ₀ / n
where n is the index of refraction of the material medium.
Therefore the expression is
v =
Let's look for the frequency of blue light in a vacuum
f =
f =
f = 6.667 10¹⁴ Hz
the refractive index of air is tabulated
n = 1,00029
let's calculate
v =
450 10-9 / 1,00029 6,667 1014
v = 2,99913 10⁸ m / s
we can see that the decrease in speed is very small
The answer is a because it has a high melting tolerance
Answer:
1.Identify the atoms on each side,
2. Count the atoms on each side,
3.Use coefficients to increase the number of atoms on each side,
4.Check to make sure you have same number of each type of atom on each side
Explanation:
THEY ALL RIGHT!!!!!!!!!