Answer:
5.71×10¹⁴ Hz
Explanation:
Applying,
v = λf................. Equation 1
Where v = speed of the electromagnetic radiation, λ = wavelength of the electromagnetic radiation, f = frequency
make f the subject of the equation
f = v/λ............. Equation 2
From the question,
Given: λ = 525 nm = 5.25×10⁻⁷ m,
Constant: Speed of electromagnetic wave (v) = 3.0×10⁸ m/s
Substitute these values into equation 2
f = (3.0×10⁸)/(5.25×10⁻⁷)
f = 5.71×10¹⁴ Hz
Hence the frequency of light is 5.71×10¹⁴ Hz
Mechanical efficiency is a measure of how well the machine converts the input work or energy into some useful output. It is calculated by dividing the output work by the input work. The ideal machine has mechanical efficiency equal to unity, while the real machine has mechanical efficiency less than unity
The formation of lactic acid in human muscles is closely associated with intense exertion or activity, during which aerobic respiration that uses oxygen to produce energy cannot be able to match the demand of energy by the muscles.
The muscles therefore resort to anaerobic respiration for energy where pyruvate becomes a makeshift hydrogen acceptor rather than oxygen as happens in aerobic respiration.
Pyruvate accepts a hydrogen from NADH and becomes reduced to lactate or lactic acid while NADH is oxidized to NAD
which is crucial in the formation of energy that is then stored in the form of ATP which is used to re-fuel the muscles to keep them going.
Answer:
True
Explanation:
Whenever electrons are transferred between objects, neutral matter becomes charged. For example, when atoms lose or gain electrons they become charged particles called ions. Three ways electrons can be transferred are conduction, friction, and polarization. In each case, the total charge remains the same.
I tried, hope this helps :)
* I might be wrong though
Answer:
636.4 J
Explanation:
The potential energy between one of the charges at the corner of the square and the fifth identical charge is U = kq²/r where q = charge = +50 × 10⁻⁶ C and r = distance from center of square. = √2 m (since the midpoint of the sides = 1 m, so the distance from the charge at the corner to the center is thus √(1² + 1²) = √2)
Since we have four charges, the additional potential energy to move the charge to the centre of the square is U' = 4U = 4kq²/r
U' = 4kq²/r
= 4 × 9 × 10⁹ Nm²/C² (+50 × 10⁻⁶ C)²/√2 m
= 900 Nm²/√2 m
= 636.4 J