Explanation:
It is given that,
Mass of the brick, m = 1.15 kg
Radius of the circle, r = 1.44 m
The cable will break if the tension exceeds 43.0 N
Let v is the maximum sped can have at the bottom of the circle before the cable will break. At the bottom of the circle, the net force is equal to the centripetal force along with the weight of the brick. So,




v = 6.30 m/s
So, the maximum speed of the brick at the bottom of the circle before the cable will break is 6.3 m/s. Hence, this is the required solution.
D. Velocity because it describes a speed and direction
The answer to your question is C.
Answer: 996m/s
Explanation:
Formula for calculating velocity of wave in a stretched string is
V = √T/M where;
V is the velocity of wave
T is tension
M is the mass per unit length of the wire(m/L)
Since the second wire is twice as far apart as the first, it will be L2 = 2L1
Let V1 and V2 be the speed of the shorter and longer wire respectively
V1 = √T/M1... 1
V2 = √T/M2... 2
Since V1 = 249m/s, M1 = m/L1 M2 = m/L2 = m/2L1
The equations will now become
249 = √T/(m/L1) ... 3
V2 = √T/(m/2L1)... 4
From 3,
249² = TL1/m...5
From 4,
V2²= 2TL1/m... 6
Dividing equation 5 by 6 we have;
249²/V2² = TL1/m×m/2TL1
{249/V2}² = 1/2
249/V2 = (1/2)²
249/V2 = 1/4
V2 = 249×4
V2 = 996m/s
Therefore the speed of the wave on the longer wire is 996m/s