1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MA_775_DIABLO [31]
3 years ago
13

What is the correct name for (NH4)4P407?​

Chemistry
1 answer:
Snowcat [4.5K]3 years ago
3 0

Answer:

Diammonium hydrogen phosphate

Explanation:

You might be interested in
If 0.500 mol neon at 1.00 atm and 273 K expands against a constant external pressure of 0.100 atm until the gas pressure reaches
trapecia [35]

Answer:

The work done on neon = -323 J

The internal energy change= -392.84 J

The heat absorbed by neon = -69.84 J

Explanation:

Step 1: Data given

Number of moles  = 0.500 moles

Pressure  = 1 atm

Temperature  = 273 Kelvin

The pressure will change from 1.00 atm to 0.200 atm. The temperature changes from 273 to 210 Kelvin.

a) calculate the work done on neon

W = -P(V2-V1)    

⇒ with P = the pressure = 0.1 atm

⇒ with V1 = the initial volume = nRTi /Pi

⇒ with V2 = the final volume = nRTf /Pf

W = -PnR((T2/P2) -(T1/P1))

⇒ with T2 = the final temperature = 210 K

 ⇒ with T1 = the initial temperature = 273 K

 ⇒ with P2 = the final pressure = 0.200 atm

 ⇒ with P1 = the initial pressure = 1.00 atm

W = -nR (210*(0.1/0.2) - 273*(0.1/1.00))

W = -nR*(105 - 27.3)

W= -(0.500)*(8.314)*(77.7)

W = -323 J

b) calculate the internal energy change

E = (3/2)*nRT

ΔE = Ef - Ei

ΔE =(3/2)*nR(T2-T1)

⇒ with n= number of moles = 0.500 moles

⇒ with T2 =the final temperature = 210 K

⇒ with T1 = the initial temperature = 273 K

ΔE = (3/2)*(0.5)*(8.314)(210-273)

ΔE = -392.84 J

c) Calculate the heat absorbed by neon

ΔE = q + W

q = ΔE -W

⇒ with ΔE = -392.84 J

⇒ with W = -323 J

q = -392.84 J -( -323 J)

q =-392.84 J + 323 J

q = -69.84 J

4 0
3 years ago
One question please help!
Agata [3.3K]
<span>1 trial : you have nothing to compare the result with - you don't know if it's a mistake.
2 trials : you can compare results - if very different, one may have gone wrong, but which one?
3 trials : if 2 results are close and 3rd far away, 3rd probably unreliable and can be rejected.

******************************

First calculate the enthalpy of fusion. M, C and m,c = mass and specific heat of calorimeter and water; n, L = mass and heat of fusion of ice; T = temperature fall.

L = (mc+MC)T/n.

c=4.18 J/gK. I assume calorimeter was copper, so C=0.385 J/gK.

1. M = 409g, m = 45g. T = 22c, n = 14g
L = (45*4.18+409*0.385)*22/14 = 543.0 J/g.

2. M = 409g, m = 49g, T = 20c, n = 13g
L = (49*4.18+409*0.385)*20/13 = 557.4 J/g.

3. M = 409g, m = 54g, T = 20c, n = 14g
L = (54*4.18+409*0.385)*20/14 = 547.4 J/g.

(i) Estimate error in L from spread of 3 results.
Average L = 549.3 J/g.
average of squared differences (variance) = (6.236^2+8.095^2+1.859^2)/3 = 35.96
standard deviation = 5.9964
standard error = SD/(N-1) = 5.9964/2 = 3 J/g approx.

% error = 3/547 x 100% = 0.5%.

(ii) Estimate error in L from accuracy of measurements:
error in masses = +/-0.5g
error in T = +/-0.5c

For Trial 3
M = 409g, error = 0.5g
m = 463-409, error = sqrt(0.5^2+0.5^2) = 0.5*sqrt(2)
n =(516-463)-(448-409)=14, error = 0.5*sqrt(4) = 1.0g
K = (mc+MC)=383, error = sqrt[2*(0.5*4.18)^2+(0.5*0.385)^2] = 2.962

L = K*T/n
% errors are
K: 3/383 x 100% = 0.77
T: 0.5/20 x 100% = 2.5
n: 1.0/14 x 100% = 7.14

% errors in K and T are << error in n, so we can ignore them.
% error in L = same as in n = 7% x 547.4 = 40 (always round final error to 1 sig fig).

*************************************

The result is (i) L= 549 +/- 3 J/g or (ii) L = 550 +/- 40 J/g.
Both are very far above accepted figure of 334 J/g, so there is at least one systematic error in the experiment or the calculations.
eg calorimeter may not be copper, so C is not 0.385 J/gK. (If it was polystyrene, which absorbs/ transmits little heat, the effective value of C would be very low, reducing L.)
Using +/- 40 is probably best (more cautious).
However, the spread in the actual results is much smaller; try to explain this discrepancy - eg
* measurements were "fiddled" to get better results; other Trials were made but only best 3 were chosen.
* measurements were more accurate than I assumed (eg masses to nearest 0.1g but rounded to 1g when written down).

Other sources of error:
L=(mc+MC)T/n is too high, so n (ice melted) may be too small, or T (temp fall) too high - why?
* it is suspicious that all final temperatures were 0c - was this actually measured or just guessed? a higher final temp would reduce L.
* we have assumed initial and final temperature of ice was 0c, it may actually have been colder, so less ice would melt - this could explain small values of n
* some water might have been left in container when unmelted ice was weighed (eg clinging to ice) - again this could explain small n;
* poor insulation - heat gained from surroundings, melting more ice, increasing n - but this would reduce measured L below 334 J/g not increase it.
* calorimeter still cold from last trial when next one started, not given time to reach same temperature as water - this would reduce n.
Hope This Helps :)
</span>
3 0
3 years ago
A high temperature state of matter in which atoms lose their electrons
Sidana [21]
The phase of matter where atoms lose their electrons is plasma. It requires quite a bit of heat, too.

4 0
3 years ago
Which substance will react with metal?
Kazeer [188]

Answer:

A neutral solution hope it helps

4 0
3 years ago
I REALLY NEED HELP WITH THIS PLSSSS
Leona [35]

Answer:

umm ok figure it out.

Explanation:

4 0
3 years ago
Read 2 more answers
Other questions:
  • How many liters of hydrogen gas will be produced at STP from the reaction of 7.179 x 1023 atoms of magnesium with 54.21 g of pho
    13·1 answer
  • Which of the following solutions will have the lowest boiling point?
    15·1 answer
  • Were are electrons located
    13·2 answers
  • The average bond length in C-C in benzene (C6H6) is between single and double bond lengths. This is due to which of the followin
    6·1 answer
  • The first ionization energy of mg is 735 kj/mol. calculate zeff.
    14·1 answer
  • How many moles of ammonium carbonate are needed to decompose in order to produce 6.52g of carbon dioxide? Ammonium oxide is the
    14·1 answer
  • Which metallic properties are caused by atoms rolling over each other in metallic bonds?
    7·2 answers
  • Vapor pressure can be described as: A) the temperature at which bubbles of vapor appear in a liquid. B) the pressure exerted on
    12·1 answer
  • The solubility of alcohol decrease with increasing numbers of carbon atom explain​
    5·1 answer
  • Please help!
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!