Height of the rocket will be <span>h(t)=−<span>12</span>g<span>t2</span>+<span>v0</span>tsinθ+<span>h0</span></span> where
<span>g=9.8<span> m/s2</span></span>
<span><span>v0</span>=86 m/s</span>
<span><span>h0</span>=0 m</span>
<span>θ= angle formed with the vertical
</span>
That's a parabola. You'll solve that for <span>h(<span>tf</span>)=0</span> to find the time of flight.
The horizontal component of the rocket's velocity will be <span><span>vx</span>=<span>v0</span>cosθ</span>. You know that <span>x=<span>vx</span><span>tf</span>=104 m</span> where <span>tf</span> is the time of flight. You can use that relationship to write an expression for <span>tf</span> in terms of <span>v0</span> and θ. Substitute that into the first equation and solve for θ.
Once you've got the parabola figured out, you can easily find the maximum height by finding the vertex, and you've already found the duration of the flight.
According to the universal law of gravitation, all particles attract every other particle with a force that is directly proportional to the product of their masses and inversely proportional to the square of the distance between them. So the answer here would be,
a. everything has a gravitational force because everything has mass.
Answer:
112m/s
Explanation:
14x8=112 therefore meaning the zebra would run 112m/s
As we know that time period of simple pendulum is given as
T = 2π √L/g