NO₂ is a brown gas while N₂O₄ is colorless. If heating causes a brown color to persist, then this means that heating causes the reaction to shift backwards and produce NO₂. Therefore, the reaction must be exothermic.
Answer:
74.4 ml
Explanation:
C₆H₈O₇(aq) + 3NaHCO₃(s) => Na₃C₆H₅O₃(aq + 3CO₂(g) + 3H₂O(l)
Given 15g = 15g/84g/mol = 0.1786mole Sodium Bicarbonate
From equation stoichiometry 3moles NaHCO₃ is needed for each mole citric acid or, moles of citric acid needed is 1/3 of moles sodium bicarbonate used.
Therefore, for complete reaction of 0.1786 mole NaHCO₃ one would need 1/3 of 0.1786 mole citric acid or 0.0595 mole H-citrate.
The question is now what volume of 0.8M H-citrate solution would contain 0.0595mole of the H-citrate? This can be determined from the equation defining molarity. That is => Molarity = moles solute / Liters of solution
=> Volume (Liters) = moles citric acid / Molarity of citric acid solution
=> Volume needed in liters = 0.0.0595 mole/0.80M = 0.0744 Liters or 74.4 ml
5C2O4^(2-)(aq) + 2MnO4^-(aq) + 16H+(aq) → 10CO2(g) + 2Mn2+(aq) + 8H2O(l)` is the chemical reaction and mole ratio between oxalate and permanganate in the titration reaction.
A chemical reaction is a procedure that causes one group of chemical components to change chemically into another. Chemical reactions, which can frequently be described by a chemical equation, traditionally include changes that only affect the locations of electrons in the formation and dissolution of chemical bonds between atoms, with no change to the nuclei (no change to the elements present). The study of chemical processes involving unstable and radioactive elements, where both electronic and nuclear changes may take place, is known as nuclear chemistry.
To know more about chemical reaction, click here,
brainly.com/question/11231920
#SPJ4