The answer is definitely D
Answer:
The answer to your question is V2 = 66.7 ml
Explanation:
Data
Volume 1 = V1 = 400 ml
Pressure 1 = P1 = 1 atm
Volume 2 = V2 = ?
Pressure 2 = P2 = 6 atm
Process
1.- To solve this problem use Boyle's law
P1V1 = P2V2
-solve for V2
V2 = P1V1 / P2
-Substitution
V2 = (1)(400) / 6
-Simplification
V2 = 400 / 6
-Result
V2 = 66.7 ml
Answer:
378mL
Explanation:
The following data were obtained from the question:
Pressure (P) = 99.19 kPa
Temperature (T) = 28°C
Number of mole (n) = 0.015 mole
Volume (V) =...?
Next, we shall convert the pressure and temperature to appropriate units. This is illustrated below:
For Pressure:
101.325 KPa = 1 atm
Therefore, 99.19 kPa = 99.19/101.325 = 0.98 atm
For Temperature:
T(K) = T(°C) + 273
T(°C) = 28°C
T(K) = 28°C + 273 = 301K.
Next we shall determine the volume of N2. The volume of N2 can be obtained by using the ideal gas equation as shown below:
PV = nRT
Pressure (P) = 0.98 atm
Temperature (T) = 301K
Number of mole (n) = 0.015 mole
Gas constant (R) = 0.0821atm.L/Kmol.
Volume (V) =...?
0.98 x V = 0.015 x 0.0821 x 301
Divide both side by 0.98
V = (0.015 x 0.0821 x 301) /0.98
V = 0.378 L
Finally, we shall convert 0.378 L to millilitres (mL). This is illustrated below:
1L = 1000mL
Therefore, 0.378L = 0.378 x 1000 = 378mL
Therefore, the volume of N2 collected is 378mL
Natural diamonds are made very deep within earth's surface where high temperatures and pressure exist naturally, thus making them much more difficult to obtain, and making them a more expensive option that Swarovski Crystal.