Answer:
1240000 kg * m/s
Explanation:
p = momentum
p = mass * velocity in kg* m/s
62,000 kg * 20 m/s = 1240000 kg * m/s
Answer:
The focal length of eye piece is 6.52 cm.
Explanation:
Given that,
Angular Magnification of the microscope M = -46
the distance between the lens in microscope L= 16 cm
The focal length of objective f₀ = 1.5 cm
Normal near point N = 25 cm
Have to find focal length of eye piece f ₙ =?
The angular magnification is given by
M ≈ - (L-fₙ)N/f₀fₙ
Rearranging for fₙ
fₙ =L(1 - Mf₀/N)⁺¹
=18/2.76
fₙ = 6.52 cm
The focal length of eye piece is 6.52 cm.
The whole question is talking about the amplitude of a wave
that's transverse and wiggling vertically.
Equilibrium to the crest . . . that's the amplitude.
Crest to trough . . . that's double the amplitude.
Trough to trough . . . How did that get in here ? Yes, that's
the wavelength, but it has nothing to do
with vertical displacement.
Frequency . . . that's how many complete waves pass a mark
on the ground every second. Doesn't belong here.
Notice that this has to be a transverse wave. If it's a longitudinal wave,
like sound or a slinky, then it may not have any displacement at all
across the direction it's moving.
It also has to be a vertically 'polarized' wave. If it's wiggling across
the direction it's traveling BUT it's wiggling side-to-side, then it has
no vertical displacement. It still has an amplitude, but the amplitude
is all horizontal.
Answer:
Keeping the speed fixed and decreasing the radius by a factor of 4
Explanation:
A ball is whirled on the end of a string in a horizontal circle of radius R at constant speed v. The centripetal acceleration is given by :

We need to find how the "centripetal acceleration of the ball can be increased by a factor of 4"
It can be done by keeping the speed fixed and decreasing the radius by a factor of 4 such that,
R' = R/4
New centripetal acceleration will be,




So, the centripetal acceleration of the ball can be increased by a factor of 4.